

 Hide navigation sidebar

 Hide table of contents sidebar

 Toggle site navigation sidebar

 PyMuPDF 1.23.25 documentation

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 PyMuPDF 1.23.25 documentation

 About

	Features Comparison
	Performance
	License and Copyright

User Guide

	Installation
	The Basics
	Tutorial

How to Guide

	Opening Files
	Text
	Images
	Annotations
	Drawing and Graphics
	Stories
	Journalling
	Multiprocessing
	Optional Content Support
	Low-Level Interfaces
	Common Issues and their Solutions

API Reference

	Module fitz
	ClassesToggle child pages in navigation
	Annot
	Archive
	Colorspace
	DisplayList
	Document
	DocumentWriter
	Font
	Identity
	IRect
	Link
	linkDest
	Matrix
	Outline
	Page
	Pixmap
	Point
	Quad
	Rect
	Shape
	Story
	TextPage
	TextWriter
	Tools
	Widget
	Xml

	Operator Algebra for Geometry Objects
	Low Level Functions and ClassesToggle child pages in navigation
	Functions
	Device
	Working together: DisplayList and TextPage

	Glossary
	Constants and Enumerations
	Color Database

Other

	Appendix 1: Details on Text Extraction
	Appendix 2: Considerations on Embedded Files
	Appendix 3: Assorted Technical Information
	Appendix 4: Performance Comparison Methodology
	Change Log
	Deprecated Names

 v: latest

 	Versions
	latest

 	Downloads
	pdf

 	On Read the Docs
	
 Project Home

	
 Builds

 Back to top

 Edit this page

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 English日本語

 Find #pymupdf on Discord

 Do you have any feedback on this page?

Widget#

This class represents a PDF Form field, also called a “widget”. Throughout this documentation, we are using these terms synonymously. Fields technically are a special case of PDF annotations, which allow users with limited permissions to enter information in a PDF. This is primarily used for filling out forms.

Like annotations, widgets live on PDF pages. Similar to annotations, the first widget on a page is accessible via Page.first_widget and subsequent widgets can be accessed via the Widget.next property.

(Changed in version 1.16.0) MuPDF no longer treats widgets as a subset of general annotations. Consequently, Page.first_annot and Annot.next() will deliver non-widget annotations exclusively, and be None if only form fields exist on a page. Vice versa, Page.first_widget and Widget.next() will only show widgets. This design decision is purely internal to MuPDF; technically, links, annotations and fields have a lot in common and also continue to share the better part of their code within (Py-) MuPDF.

Class API

	
class Widget#
		
button_states()#
	New in version 1.18.15

Return the names of On / Off (i.e. selected / clicked or not) states a button field may have. While the ‘Off’ state usually is also named like so, the ‘On’ state is often given a name relating to the functional context, for example ‘Yes’, ‘Female’, etc.

This method helps finding out the possible values of field_value in these cases.

	returns:
	a dictionary with the names of ‘On’ and ‘Off’ for the normal and the pressed-down appearance of button widgets. The following example shows that the “selected” value is “Male”:

>>> print(field.field_name, field.button_states())
Gender Second person {'down': ['Male', 'Off'], 'normal': ['Male', 'Off']}

	
on_state()#
		New in version 1.22.2

Return the value of the “ON” state of check boxes and radio buttons. For check boxes this is always the value “Yes”. For radio buttons, this is the value to select / activate the button.

	returns:
	the value that sets the button to “selected”. For non-checkbox, non-radiobutton fields, always None is returned. For check boxes the return is True. For radio buttons this is the value “Male” in the following example:

>>> print(field.field_name, field.button_states())
Gender Second person {'down': ['Male', 'Off'], 'normal': ['Male', 'Off']}
>>> print(field.on_state())
Male

So for check boxes and radio buttons, the recommended method to set them to “selected”, or to check the state is the following:

>>> field.field_value = field.on_state()
>>> field.field_value == field.on_state()
True

	
update()#
	After any changes to a widget, this method must be used to store them in the PDF [1].

	
reset()#
	Reset the field’s value to its default – if defined – or remove it. Do not forget to issue update() afterwards.

	
next#
	Point to the next form field on the page. The last widget returns None.

	
border_color#
	A list of up to 4 floats defining the field’s border color. Default value is None which causes border style and border width to be ignored.

	
border_style#
	A string defining the line style of the field’s border. See Annot.border. Default is “s” (“Solid”) – a continuous line. Only the first character (upper or lower case) will be regarded when creating a widget.

	
border_width#
	A float defining the width of the border line. Default is 1.

	
border_dashes#
	A list/tuple of integers defining the dash properties of the border line. This is only meaningful if border_style == “D” and border_color is provided.

	
choice_values#
	Python sequence of strings defining the valid choices of list boxes and combo boxes. For these widget types, this property is mandatory and must contain at least two items. Ignored for other types.

	
field_name#
	A mandatory string defining the field’s name. No checking for duplicates takes place.

	
field_label#
	An optional string containing an “alternate” field name. Typically used for any notes, help on field usage, etc. Default is the field name.

	
field_value#
	The value of the field.

	
field_flags#
	An integer defining a large amount of properties of a field. Be careful when changing this attribute as this may change the field type.

	
field_type#
	A mandatory integer defining the field type. This is a value in the range of 0 to 6. It cannot be changed when updating the widget.

	
field_type_string#
	A string describing (and derived from) the field type.

	
fill_color#
	A list of up to 4 floats defining the field’s background color.

	
button_caption#
	The caption string of a button-type field.

	
is_signed#
	A bool indicating the signing status of a signature field, else None.

	
rect#
	The rectangle containing the field.

	
text_color#
	A list of 1, 3 or 4 floats defining the text color. Default value is black ([0, 0, 0]).

	
text_font#
	A string defining the font to be used. Default and replacement for invalid values is “Helv”. For valid font reference names see the table below.

	
text_fontsize#
	A float defining the text fontsize. Default value is zero, which causes PDF viewer software to dynamically choose a size suitable for the annotation’s rectangle and text amount.

	
text_maxlen#
	An integer defining the maximum number of text characters. PDF viewers will (should) not accept a longer text.

	
text_type#
	An integer defining acceptable text types (e.g. numeric, date, time, etc.). For reference only for the time being – will be ignored when creating or updating widgets.

	
xref#
	The PDF xref of the widget.

	
script#
		New in version 1.16.12

JavaScript text (unicode) for an action associated with the widget, or None. This is the only script action supported for button type widgets.

	
script_stroke#
		New in version 1.16.12

JavaScript text (unicode) to be performed when the user types a key-stroke into a text field or combo box or modifies the selection in a scrollable list box. This action can check the keystroke for validity and reject or modify it. None if not present.

	
script_format#
		New in version 1.16.12

JavaScript text (unicode) to be performed before the field is formatted to display its current value. This action can modify the field’s value before formatting. None if not present.

	
script_change#
		New in version 1.16.12

JavaScript text (unicode) to be performed when the field’s value is changed. This action can check the new value for validity. None if not present.

	
script_calc#
		New in version 1.16.12

JavaScript text (unicode) to be performed to recalculate the value of this field when that of another field changes. None if not present.

	
script_blur#
		New in version 1.22.6

JavaScript text (unicode) to be performed on losing the focus of this field. None if not present.

	
script_focus#
		New in version 1.22.6

JavaScript text (unicode) to be performed on focusing this field. None if not present.

Note

	For adding or changing one of the above scripts,

just put the appropriate JavaScript source code in the widget attribute.
To remove a script, set the respective attribute to None.

	Button fields only support script.

Other script entries will automatically be set to None.

	It is worthwhile to look at
this
manual with lots of information about Adobe’s standard scripts for various field types.
For example, if you want to add a text field representing a date,
you may want to store the following scripts.
They will ensure pattern-compatible date formats and display date pickers in supporting viewers:

widget.script_format = 'AFDate_FormatEx("mm/dd/yyyy");'
widget.script_stroke = 'AFDate_KeystrokeEx("mm/dd/yyyy");'

Standard Fonts for Widgets#

Widgets use their own resources object /DR. A widget resources object must at least contain a /Font object. Widget fonts are independent from page fonts. We currently support the 14 PDF base fonts using the following fixed reference names, or any name of an already existing field font. When specifying a text font for new or changed widgets, either choose one in the first table column (upper and lower case supported), or one of the already existing form fonts. In the latter case, spelling must exactly match.

To find out already existing field fonts, inspect the list Document.FormFonts.

	Reference
	Base14 Fontname

	CoBI
	Courier-BoldOblique

	CoBo
	Courier-Bold

	CoIt
	Courier-Oblique

	Cour
	Courier

	HeBI
	Helvetica-BoldOblique

	HeBo
	Helvetica-Bold

	HeIt
	Helvetica-Oblique

	Helv
	Helvetica (default)

	Symb
	Symbol

	TiBI
	Times-BoldItalic

	TiBo
	Times-Bold

	TiIt
	Times-Italic

	TiRo
	Times-Roman

	ZaDb
	ZapfDingbats

You are generally free to use any font for every widget. However, we recommend using ZaDb (“ZapfDingbats”) and fontsize 0 for check boxes: typical viewers will put a correctly sized tickmark in the field’s rectangle, when it is clicked.

Supported Widget Types#

PyMuPDF supports the creation and update of many, but not all widget types.

	text (PDF_WIDGET_TYPE_TEXT)

	push button (PDF_WIDGET_TYPE_BUTTON)

	check box (PDF_WIDGET_TYPE_CHECKBOX)

	combo box (PDF_WIDGET_TYPE_COMBOBOX)

	list box (PDF_WIDGET_TYPE_LISTBOX)

	radio button (PDF_WIDGET_TYPE_RADIOBUTTON): PyMuPDF does not currently support the creation of groups of (interconnected) radio buttons, where setting one automatically unsets the other buttons in the group. The widget object also does not reflect the presence of a button group. However: consistently selecting (or unselecting) a radio button is supported. This includes correctly setting the value maintained in the owning button group. Selecting a radio button may be done by either assigning True or field.on_state() to the field value. De-selecting the button should be done assigning False.

	signature (PDF_WIDGET_TYPE_SIGNATURE) read only.

Footnotes

[1]
If you intend to re-access a new or updated field (e.g. for making a pixmap), make sure to reload the page first. Either close and re-open the document, or load another page first, or simply do page = doc.reload_page(page).

Do you have any feedback on this page?

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer to licensing information at artifex.com or contact Artifex Software Inc., 39 Mesa Street, Suite 108A, San Francisco CA 94129, United States for further information.

This documentation covers all versions up to 1.23.25.

 Next

 Xml

 Previous

 Tools

 Copyright © 2015-2024, Artifex

 Made with
 Furo

 Last updated on 21. Feb 2024

 On this page

 	Widget	Widget	Widget.button_states()
	Widget.on_state()
	Widget.update()
	Widget.reset()
	Widget.next
	Widget.border_color
	Widget.border_style
	Widget.border_width
	Widget.border_dashes
	Widget.choice_values
	Widget.field_name
	Widget.field_label
	Widget.field_value
	Widget.field_flags
	Widget.field_type
	Widget.field_type_string
	Widget.fill_color
	Widget.button_caption
	Widget.is_signed
	Widget.rect
	Widget.text_color
	Widget.text_font
	Widget.text_fontsize
	Widget.text_maxlen
	Widget.text_type
	Widget.xref
	Widget.script
	Widget.script_stroke
	Widget.script_format
	Widget.script_change
	Widget.script_calc
	Widget.script_blur
	Widget.script_focus

	Standard Fonts for Widgets
	Supported Widget Types

