

 Hide navigation sidebar

 Hide table of contents sidebar

 Toggle site navigation sidebar

 PyMuPDF 1.23.26 documentation

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 PyMuPDF 1.23.26 documentation

 About

	Features Comparison
	Performance
	License and Copyright

User Guide

	Installation
	The Basics
	Tutorial
	Resources

How to Guide

	Opening Files
	Text
	Images
	Annotations
	Drawing and Graphics
	Stories
	Journalling
	Multiprocessing
	Optional Content Support
	Low-Level Interfaces
	Common Issues and their Solutions

API Reference

	Module fitz
	ClassesToggle child pages in navigation
	Annot
	Archive
	Colorspace
	DisplayList
	Document
	DocumentWriter
	Font
	Identity
	IRect
	Link
	linkDest
	Matrix
	Outline
	Page
	Pixmap
	Point
	Quad
	Rect
	Shape
	Story
	TextPage
	TextWriter
	Tools
	Widget
	Xml

	Operator Algebra for Geometry Objects
	Low Level Functions and ClassesToggle child pages in navigation
	Functions
	Device
	Working together: DisplayList and TextPage

	Glossary
	Constants and Enumerations
	Color Database

Other

	Appendix 1: Details on Text Extraction
	Appendix 2: Considerations on Embedded Files
	Appendix 3: Assorted Technical Information
	Appendix 4: Performance Comparison Methodology
	Change Log
	Deprecated Names

 v: latest

 	Versions
	latest

 	Downloads
	pdf

 	On Read the Docs
	
 Project Home

	
 Builds

 Back to top

 Edit this page

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 English日本語

 Find #pymupdf on Discord

 Do you have any feedback on this page?

Drawing and Graphics#

PDF files support elementary drawing operations as part of their syntax. This includes basic geometrical objects like lines, curves, circles, rectangles including specifying colors.

The syntax for such operations is defined in “A Operator Summary” on page 643 of the Adobe PDF References. Specifying these operators for a PDF page happens in its contents objects.

PyMuPDF implements a large part of the available features via its Shape class, which is comparable to notions like “canvas” in other packages (e.g. reportlab).

A shape is always created as a child of a page, usually with an instruction like shape = page.new_shape(). The class defines numerous methods that perform drawing operations on the page’s area. For example, last_point = shape.draw_rect(rect) draws a rectangle along the borders of a suitably defined rect = fitz.Rect(…).

The returned last_point always is the Point where drawing operation ended (“last point”). Every such elementary drawing requires a subsequent Shape.finish() to “close” it, but there may be multiple drawings which have one common finish() method.

In fact, Shape.finish() defines a group of preceding draw operations to form one – potentially rather complex – graphics object. PyMuPDF provides several predefined graphics in shapes_and_symbols.py which demonstrate how this works.

If you import this script, you can also directly use its graphics as in the following example:

-*- coding: utf-8 -*-
"""
Created on Sun Dec 9 08:34:06 2018

@author: Jorj
@license: GNU AFFERO GPL V3

Create a list of available symbols defined in shapes_and_symbols.py

This also demonstrates an example usage: how these symbols could be used
as bullet-point symbols in some text.

"""

import fitz
import shapes_and_symbols as sas

list of available symbol functions and their descriptions
tlist = [
 (sas.arrow, "arrow (easy)"),
 (sas.caro, "caro (easy)"),
 (sas.clover, "clover (easy)"),
 (sas.diamond, "diamond (easy)"),
 (sas.dontenter, "do not enter (medium)"),
 (sas.frowney, "frowney (medium)"),
 (sas.hand, "hand (complex)"),
 (sas.heart, "heart (easy)"),
 (sas.pencil, "pencil (very complex)"),
 (sas.smiley, "smiley (easy)"),
]

r = fitz.Rect(50, 50, 100, 100) # first rect to contain a symbol
d = fitz.Rect(0, r.height + 10, 0, r.height + 10) # displacement to next rect
p = (15, -r.height * 0.2) # starting point of explanation text
rlist = [r] # rectangle list

for i in range(1, len(tlist)): # fill in all the rectangles
 rlist.append(rlist[i-1] + d)

doc = fitz.open() # create empty PDF
page = doc.new_page() # create an empty page
shape = page.new_shape() # start a Shape (canvas)

for i, r in enumerate(rlist):
 tlist[i][0](shape, rlist[i]) # execute symbol creation
 shape.insert_text(rlist[i].br + p, # insert description text
 tlist[i][1], fontsize=r.height/1.2)

store everything to the page's /Contents object
shape.commit()

import os
scriptdir = os.path.dirname(__file__)
doc.save(os.path.join(scriptdir, "symbol-list.pdf")) # save the PDF

This is the script’s outcome:

How to Extract Drawings#

	New in v1.18.0

The drawing commands issued by a page can be extracted. Interestingly, this is possible for all supported document types – not just PDF: so you can use it for XPS, EPUB and others as well.

Page method, Page.get_drawings() accesses draw commands and converts them into a list of Python dictionaries. Each dictionary – called a “path” – represents a separate drawing – it may be simple like a single line, or a complex combination of lines and curves representing one of the shapes of the previous section.

The path dictionary has been designed such that it can easily be used by the Shape class and its methods. Here is an example for a page with one path, that draws a red-bordered yellow circle inside rectangle Rect(100, 100, 200, 200):

>>> pprint(page.get_drawings())
[{'closePath': True,
'color': [1.0, 0.0, 0.0],
'dashes': '[] 0',
'even_odd': False,
'fill': [1.0, 1.0, 0.0],
'items': [('c',
 Point(100.0, 150.0),
 Point(100.0, 177.614013671875),
 Point(122.38600158691406, 200.0),
 Point(150.0, 200.0)),
 ('c',
 Point(150.0, 200.0),
 Point(177.61399841308594, 200.0),
 Point(200.0, 177.614013671875),
 Point(200.0, 150.0)),
 ('c',
 Point(200.0, 150.0),
 Point(200.0, 122.385986328125),
 Point(177.61399841308594, 100.0),
 Point(150.0, 100.0)),
 ('c',
 Point(150.0, 100.0),
 Point(122.38600158691406, 100.0),
 Point(100.0, 122.385986328125),
 Point(100.0, 150.0))],
'lineCap': (0, 0, 0),
'lineJoin': 0,
'opacity': 1.0,
'rect': Rect(100.0, 100.0, 200.0, 200.0),
'width': 1.0}]
>>>

Note

You need (at least) 4 Bézier curves (of 3rd order) to draw a circle with acceptable precision. See this Wikipedia article for some background.

The following is a code snippet which extracts the drawings of a page and re-draws them on a new page:

import fitz
doc = fitz.open("some.file")
page = doc[0]
paths = page.get_drawings() # extract existing drawings
this is a list of "paths", which can directly be drawn again using Shape

#
define some output page with the same dimensions
outpdf = fitz.open()
outpage = outpdf.new_page(width=page.rect.width, height=page.rect.height)
shape = outpage.new_shape() # make a drawing canvas for the output page

loop through the paths and draw them

for path in paths:
 # ------------------------------------
 # draw each entry of the 'items' list
 # ------------------------------------
 for item in path["items"]: # these are the draw commands
 if item[0] == "l": # line
 shape.draw_line(item[1], item[2])
 elif item[0] == "re": # rectangle
 shape.draw_rect(item[1])
 elif item[0] == "qu": # quad
 shape.draw_quad(item[1])
 elif item[0] == "c": # curve
 shape.draw_bezier(item[1], item[2], item[3], item[4])
 else:
 raise ValueError("unhandled drawing", item)
 # --
 # all items are drawn, now apply the common properties
 # to finish the path
 # --
 shape.finish(
 fill=path["fill"], # fill color
 color=path["color"], # line color
 dashes=path["dashes"], # line dashing
 even_odd=path.get("even_odd", True), # control color of overlaps
 closePath=path["closePath"], # whether to connect last and first point
 lineJoin=path["lineJoin"], # how line joins should look like
 lineCap=max(path["lineCap"]), # how line ends should look like
 width=path["width"], # line width
 stroke_opacity=path.get("stroke_opacity", 1), # same value for both
 fill_opacity=path.get("fill_opacity", 1), # opacity parameters
)
all paths processed - commit the shape to its page
shape.commit()
outpdf.save("drawings-page-0.pdf")

As can be seen, there is a high congruence level with the Shape class. With one exception: For technical reasons lineCap is a tuple of 3 numbers here, whereas it is an integer in Shape (and in PDF). So we simply take the maximum value of that tuple.

Here is a comparison between input and output of an example page, created by the previous script:

Note

The reconstruction of graphics, like shown here, is not perfect. The following aspects will not be reproduced as of this version:

	Page definitions can be complex and include instructions for not showing / hiding certain areas to keep them invisible. Things like this are ignored by Page.get_drawings() - it will always return all paths.

Note

You can use the path list to make your own lists of e.g. all lines or all rectangles on the page and subselect them by criteria, like color or position on the page etc.

Do you have any feedback on this page?

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer to licensing information at artifex.com or contact Artifex Software Inc., 39 Mesa Street, Suite 108A, San Francisco CA 94129, United States for further information.

This documentation covers all versions up to 1.23.26.

 Next

 Stories

 Previous

 Annotations

 Copyright © 2015-2024, Artifex

 Made with
 Furo

 Last updated on 08. Mar 2024

 On this page

 	Drawing and Graphics	How to Extract Drawings

