

 Hide navigation sidebar

 Hide table of contents sidebar

 Toggle site navigation sidebar

 PyMuPDF 1.23.25 documentation

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 PyMuPDF 1.23.25 documentation

 About

	Features Comparison
	Performance
	License and Copyright

User Guide

	Installation
	The Basics
	Tutorial

How to Guide

	Opening Files
	Text
	Images
	Annotations
	Drawing and Graphics
	Stories
	Journalling
	Multiprocessing
	Optional Content Support
	Low-Level Interfaces
	Common Issues and their Solutions

API Reference

	Module fitz
	ClassesToggle child pages in navigation
	Annot
	Archive
	Colorspace
	DisplayList
	Document
	DocumentWriter
	Font
	Identity
	IRect
	Link
	linkDest
	Matrix
	Outline
	Page
	Pixmap
	Point
	Quad
	Rect
	Shape
	Story
	TextPage
	TextWriter
	Tools
	Widget
	Xml

	Operator Algebra for Geometry Objects
	Low Level Functions and ClassesToggle child pages in navigation
	Functions
	Device
	Working together: DisplayList and TextPage

	Glossary
	Constants and Enumerations
	Color Database

Other

	Appendix 1: Details on Text Extraction
	Appendix 2: Considerations on Embedded Files
	Appendix 3: Assorted Technical Information
	Appendix 4: Performance Comparison Methodology
	Change Log
	Deprecated Names

 v: latest

 	Versions
	latest

 	Downloads
	pdf

 	On Read the Docs
	
 Project Home

	
 Builds

 Back to top

 Edit this page

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 English日本語

 Find #pymupdf on Discord

 Do you have any feedback on this page?

Appendix 4: Performance Comparison Methodology#

This article documents the approach to measure PyMuPDF’s performance and the tools and example files used to do comparisons.

The following three sections deal with different performance aspects:

	Document Copying - This includes opening and parsing PDFs, then writing them to an output file. Because the same basic activities are also used for joining (merging) PDFs, the results also apply to these use cases.

	Text Extraction - This extracts plain text from PDFs and writes it to an output text file.

	Page Rendering - This converts PDF pages to image files looking identical to the pages. This ability is the basic prerequisite for using a tool in Python GUI scripts to scroll through documents. We have chosen a medium-quality (resolution 150 DPI) version.

Please note that in all cases the actual speed in dealing with PDF structures is not directly measured: instead, the timings also include the durations of writing files to the operating system’s file system. This cannot be avoided because tools other than PyMuPDF do not offer the option to e.g., separate the image creation step from the following step, which writes the image into a file.

So all timings documented include a common, OS-oriented base effort. Therefore, performance differences per tool are actually larger than the numbers suggest.

Files used#

A set of eight files is used for the performance testing. With each file we have the following information:

	Name of the file and download link.

	Size in bytes.

	Total number of pages in file.

	Total number of bookmarks (Table of Contents entries).

	Total number of links.

	KB size per page.

	Textsize per page is the amount text in the whole file in KB, divided by the number of pages.

	Any notes to generally describe the type of file.

	Name
	Size (bytes)
	Pages
	TOC size
	Links
	KB/page
	Textsize/page
	Notes

	adobe.pdf
	32,472,771
	1,310
	794
	32,096
	24
	1,942
	linearized, many links / bookmarks

	artifex-website.pdf
	31,570,732
	47
	46
	2,035
	656
	3,538
	graphics oriented

	db-systems.pdf
	29,326,355
	1,241
	0
	0
	23
	2,142
	
	fontforge.pdf
	8,222,384
	214
	31
	242
	38
	1,058
	mix of text & graphics

	pandas.pdf
	10,585,962
	3,071
	536
	16,554
	3
	1,539
	many pages

	pymupdf.pdf
	6,805,176
	478
	276
	5,277
	14
	1,937
	text oriented

	pythonbook.pdf
	9,983,856
	669
	198
	1,953
	15
	1,929
	
	sample-50-MB-pdf-file.pdf
	52,521,850
	1
	0
	0
	51,291
	23,860
	single page, graphics oriented, large file size

Note

adobe.pdf and pymupdf.pdf are clearly text oriented, artifex-website.pdf and sample-50-MB-pdf-file.pdf are graphics oriented. Other files are a mix of both.

Tools used#

In each section, the same fixed set of PDF files is being processed by a set of tools. The set of tools used per performance aspect however varies, depending on the supported tool features.

All tools are either platform independent, or at least can run on both, Windows and Unix / Linux.

	Tool
	Description

	PyMuPDF
	The tool of this manual.

	PDFrw
	A pure Python tool, being used by rst2pdf, has interface to ReportLab.

	PyPDF2
	A pure Python tool with a large function set.

	PDFMiner
	A pure Python to extract text and other data from PDF.

	XPDF
	A command line utility with multiple functions.

	PikePDF
	A Python package similar to PDFrw, but based on C++ library QPDF.

	PDF2JPG
	A Python package specialized on rendering PDF pages to JPG images.

Copying / Joining / Merging#

How fast is a PDF file read and its content parsed for further processing? The sheer parsing performance cannot directly be compared, because batch utilities always execute a requested task completely, in one go, front to end. PDFrw too, has a lazy strategy for parsing, meaning it only parses those parts of a document that are required in any moment.

To find an answer to the question, we therefore measure the time to copy a PDF file to an output file with each tool, and do nothing else.

These are the Python commands for how each tool is used:

PyMuPDF

import fitz
doc = fitz.open("input.pdf")
doc.save("output.pdf")

PDFrw

doc = PdfReader("input.pdf")
writer = PdfWriter()
writer.trailer = doc
writer.write("output.pdf")

PikePDF

from pikepdf import Pdf
doc = Pdf.open("input.pdf")
doc.save("output.pdf")

PyPDF2

pdfmerge = PyPDF2.PdfMerger()
pdfmerge.append("input.pdf")
pdfmerge.write("output.pdf")
pdfmerge.close()

Observations

These are our run time findings in seconds along with a base rate summary compared to PyMuPDF:

	Name
	PyMuPDF
	PDFrw
	PikePDF
	PyPDF2

	adobe.pdf
	1.75
	5.15
	22.37
	374.05

	artifex-website.pdf
	0.26
	0.38
	1.41
	2.81

	db-systems.pdf
	0.15
	0.8
	1.68
	2.46

	fontforge.pdf
	0.09
	0.14
	0.28
	1.1

	pandas.pdf
	0.38
	2.21
	2.73
	70.3

	pymupdf.pdf
	0.11
	0.56
	0.83
	6.05

	pythonbook.pdf
	0.19
	1.2
	1.34
	37.19

	sample-50-MB-pdf-file.pdf
	0.12
	0.1
	2.93
	0.08

	Total
	3.05
	10.54
	33.57
	494.04

					
	Rate compared to PyMuPDF
	1.0
	3.5
	11.0
	162

Text Extraction#

The following table shows plain text extraction durations. All tools have been used with their most basic functionality - i.e. no layout re-arrangements, etc.

Observations

These are our run time findings in seconds along with a base rate summary compared to PyMuPDF:

	Name
	PyMuPDF
	XPDF
	PyPDF2
	PDFMiner

	adobe.pdf
	2.01
	6.19
	22.2
	49.15

	artifex-website.pdf
	0.18
	0.3
	1.1
	4.06

	db-systems.pdf
	1.57
	4.26
	25.75
	42.19

	fontforge.pdf
	0.24
	0.47
	2.69
	4.2

	pandas.pdf
	2.41
	10.54
	25.38
	76.56

	pymupdf.pdf
	0.49
	2.34
	6.44
	13.55

	pythonbook.pdf
	0.84
	2.88
	9.28
	24.27

	sample-50-MB-pdf-file.pdf
	0.27
	0.44
	8.8
	13.29

	Total
	8.01
	27.42
	101.64
	227.27

					
	Rate compared to PyMuPDF
	1.0
	3.42
	12.69
	28.37

Page Rendering#

We have tested rendering speed of PyMuPDF against pdf2jpg and XPDF at a resolution of 150 DPI,

These are the Python commands for how each tool is used:

PyMuPDF

def ProcessFile(datei):
print "processing:", datei
doc=fitz.open(datei)
for p in fitz.Pages(doc):
 pix = p.get_pixmap(dpi=150)
 pix.save("t-%s.png" % p.number)
 pix = None
doc.close()
return

XPDF

pdftopng.exe -r 150 file.pdf ./

PDF2JPG

def ProcessFile(datei):
 print("processing:", datei)
 pdf2jpg.convert_pdf2jpg(datei, "images", pages="ALL", dpi=150)
 return

Observations

These are our run time findings in seconds along with a base rate summary compared to PyMuPDF:

	Name
	PyMuPDF
	XPDF
	PDF2JPG

	adobe.pdf
	51.33
	98.16
	75.71

	artifex-website.pdf
	26.35
	51.28
	54.11

	db-systems.pdf
	84.59
	143.16
	405.22

	fontforge.pdf
	12.23
	22.18
	20.14

	pandas.pdf
	138.74
	241.67
	202.06

	pymupdf.pdf
	22.35
	39.11
	33.38

	pythonbook.pdf
	30.44
	49.12
	55.68

	sample-50-MB-pdf-file.pdf
	1.01
	1.32
	5.22

	Total
	367.04
	646
	851.52

				
	Rate compared to PyMuPDF
	1.0
	1.76
	2.32

Do you have any feedback on this page?

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer to licensing information at artifex.com or contact Artifex Software Inc., 39 Mesa Street, Suite 108A, San Francisco CA 94129, United States for further information.

This documentation covers all versions up to 1.23.25.

 Next

 Change Log

 Previous

 Appendix 3: Assorted Technical Information

 Copyright © 2015-2024, Artifex

 Made with
 Furo

 Last updated on 21. Feb 2024

 On this page

 	Appendix 4: Performance Comparison Methodology	Files used
	Tools used
	Copying / Joining / Merging
	Text Extraction
	Page Rendering

