

 Hide navigation sidebar

 Hide table of contents sidebar

 Toggle site navigation sidebar

 PyMuPDF 1.23.25 documentation

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 PyMuPDF 1.23.25 documentation

 About

	Features Comparison
	Performance
	License and Copyright

User Guide

	Installation
	The Basics
	Tutorial

How to Guide

	Opening Files
	Text
	Images
	Annotations
	Drawing and Graphics
	Stories
	Journalling
	Multiprocessing
	Optional Content Support
	Low-Level Interfaces
	Common Issues and their Solutions

API Reference

	Module fitz
	ClassesToggle child pages in navigation
	Annot
	Archive
	Colorspace
	DisplayList
	Document
	DocumentWriter
	Font
	Identity
	IRect
	Link
	linkDest
	Matrix
	Outline
	Page
	Pixmap
	Point
	Quad
	Rect
	Shape
	Story
	TextPage
	TextWriter
	Tools
	Widget
	Xml

	Operator Algebra for Geometry Objects
	Low Level Functions and ClassesToggle child pages in navigation
	Functions
	Device
	Working together: DisplayList and TextPage

	Glossary
	Constants and Enumerations
	Color Database

Other

	Appendix 1: Details on Text Extraction
	Appendix 2: Considerations on Embedded Files
	Appendix 3: Assorted Technical Information
	Appendix 4: Performance Comparison Methodology
	Change Log
	Deprecated Names

 v: latest

 	Versions
	latest

 	Downloads
	pdf

 	On Read the Docs
	
 Project Home

	
 Builds

 Back to top

 Edit this page

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 English日本語

 Find #pymupdf on Discord

 Do you have any feedback on this page?

Story#

	New in v1.21.0

	Method / Attribute
	Short Description

	Story.reset()
	“rewind” story output to its beginning

	Story.place()
	compute story content to fit in provided rectangle

	Story.draw()
	write the computed content to current page

	Story.element_positions()
	callback function logging currently processed story content

	Story.body
	the story’s underlying body

	Story.write()
	places and draws Story to a DocumentWriter

	Story.write_stabilized()
	iterative layout of html content to a DocumentWriter

	Story.write_with_links()
	like write() but also creates PDF links

	Story.write_stabilized_with_links()
	like write_stabilized() but also creates PDF links

	Story.fit()
	Finds optimal rect that contains the story self.

	Story.fit_scale()
	
	Story.fit_height()
	
	Story.fit_width()
	

Class API

	
class Story#
		
__init__(self, html=None, user_css=None, em=12, archive=None)#
	Create a story, optionally providing HTML and CSS source.
The HTML is parsed, and held within the Story as a DOM (Document Object Model).

This structure may be modified: content (text, images) may be added,
copied, modified or removed by using methods of the Xml class.

When finished, the story can be written to any device;
in typical usage the device may be provided by a DocumentWriter to make new pages.

Here are some general remarks:

	The Story constructor parses and validates the provided HTML to create the DOM.

	PyMuPDF provides a number of ways to manipulate the HTML source by
providing access to the nodes of the underlying DOM.
Documents can be completely built from ground up programmatically,
or the existing DOM can be modified pretty arbitrarily.
For details of this interface, please see the Xml class.

	If no (or no more) changes to the DOM are required,
the story is ready to be laid out and to be fed to a series of devices
(typically devices provided by a DocumentWriter to produce new pages).

	The next step is to place the story and write it out.
This can either be done directly, by looping around calling place() and draw(),
or alternatively,
the looping can handled for you using the write() or write_stabilised() methods.
Which method you choose is largely a matter of taste.

	To work in the first of these styles, the following loop should be used:

	Obtain a suitable device to write to;
typically by requesting a new,
empty page from a DocumentWriter.

	Determine one or more rectangles on the page,
that should receive story data.
Note that not every page needs to have the same set of rectangles.

	Pass each rectangle to the story to place it,
learning what part of that rectangle has been filled,
and whether there is more story data that did not fit.
This step can be repeated several times with adjusted rectangles
until the caller is happy with the results.

	Optionally, at this point,
we can request details of where interesting items have been placed,
by calling the element_positions() method.
Items are deemed to be interesting if their integer heading attribute is a non-zero
(corresponding to HTML tags h1 - h6),
if their id attribute is not None (corresponding to HTML tag id),
or if their href attribute is not None (responding to HTML tag href).
This can conveniently be used for automatic generation of a Table of Contents,
an index of images or the like.

	Next, draw that rectangle out to the device with the draw() method.

	If the most recent call to place() indicated that all the story data had fitted,
stop now.

	Otherwise, we can loop back.
If there are more rectangles to be placed on the current device (page),
we jump back to step 3 - if not, we jump back to step 1 to get a new device.

	Alternatively, in the case where you are using a DocumentWriter,
the write() or write_stabilized() methods can be used.
These handle all the looping for you,
in exchange for being provided with callbacks that control the behaviour
(notably a callback that enumerates the rectangles/pages to use).

	Which part of the story will land on which rectangle / which page,
is fully under control of the Story object and cannot be predicted.

	Images may be part of a story. They will be placed together with any surrounding text.

	Multiple stories may - independently from each other - write to the same page.
For example, one may have separate stories for page header,
page footer, regular text, comment boxes, etc.

	Parameters:
		html (str) – HTML source code. If omitted, a basic minimum is generated (see below).
If provided, not a complete HTML document is needed.
The in-built source parser will forgive (many / most)
HTML syntax errors and also accepts HTML fragments like
"Hello, <i>World!</i>".

	user_css (str) – CSS source code. If provided, must contain valid CSS specifications.

	em (float) – the default text font size.

	archive –
an Archive from which to load resources for rendering. Currently supported resource types are images and text fonts. If omitted, the story will not try to look up any such data and may thus produce incomplete output.

Note

Instead of an actual archive, valid arguments for creating an Archive can also be provided – in which case an archive will temporarily be constructed. So, instead of story = fitz.Story(archive=fitz.Archive("myfolder")), one can also shorter write story = fitz.Story(archive="myfolder").

	
place(where)#
	Calculate that part of the story’s content, that will fit in the provided rectangle. The method maintains a pointer which part of the story’s content has already been written and upon the next invocation resumes from that pointer’s position.

	Parameters:
	where (rect_like) – layout the current part of the content to fit into this rectangle. This must be a sub-rectangle of the page’s MediaBox.

	Return type:
	tuple[bool, rect_like]

	Returns:
	a bool (int) more and a rectangle filled. If more == 0, all content of the story has been written, otherwise more is waiting to be written to subsequent rectangles / pages. Rectangle filled is the part of where that has actually been filled.

	
draw(dev, matrix=None)#
	Write the content part prepared by Story.place() to the page.

	Parameters:
		dev – the Device created by dev = writer.begin_page(mediabox). The device knows how to call all MuPDF functions needed to write the content.

	matrix (matrix_like) – a matrix for transforming content when writing to the page. An example may be writing rotated text. The default means no transformation (i.e. the Identity matrix).

	
element_positions(function, args=None)#
	Let the Story provide positioning information about certain HTML elements once their place on the current page has been computed - i.e. invoke this method directly after Story.place().

Story will pass position information to function. This information can for example be used to generate a Table of Contents.

	Parameters:
		function (callable) – a Python function accepting an ElementPosition object. It will be invoked by the Story object to process positioning information. The function must be a callable accepting exactly one argument.

	args (dict) – an optional dictionary with any additional information
that should be added to the ElementPosition instance passed to function.
Like for example the current output page number.
Every key in this dictionary must be a string that conforms to the rules for a valid Python identifier.
The complete set of information is explained below.

	
reset()#
	Rewind the story’s document to the beginning for starting over its output.

	
body#
	The body part of the story’s DOM. This attribute contains the Xml node of body. All relevant content for PDF production is contained between “<body>” and “</body>”.

	
write(writer, rectfn, positionfn=None, pagefn=None)#
	Places and draws Story to a DocumentWriter. Avoids the need for
calling code to implement a loop that calls Story.place() and
Story.draw() etc, at the expense of having to provide at least the
rectfn() callback.

	Parameters:
		writer – a DocumentWriter or None.

	rectfn –
a callable taking (rect_num: int, filled: Rect) and
returning (mediabox, rect, ctm):

	mediabox: None or rect for new page.

	rect: The next rect into which content should be placed.

	ctm: None or a Matrix.

	positionfn –
None, or a callable taking (position: ElementPosition):

		position:
	An ElementPosition with an extra .page_num member.

Typically called multiple times as we generate elements that
are headings or have an id.

	pagefn – None, or a callable taking (page_num, mediabox, dev, after);
called at start (after=0) and end (after=1) of each page.

	
static write_stabilized(writer, contentfn, rectfn, user_css=None, em=12, positionfn=None, pagefn=None, archive=None, add_header_ids=True)#
	Static method that does iterative layout of html content to a
DocumentWriter.

For example this allows one to add a table of contents section
while ensuring that page numbers are patched up until stable.

Repeatedly creates a new Story from (contentfn(),
user_css, em, archive) and lays it out with internal call
to Story.write(); uses a None writer and extracts the list
of ElementPosition’s which is passed to the next call of
contentfn().

When the html from contentfn() becomes unchanged, we do a
final iteration using writer.

	Parameters:
		writer – A DocumentWriter.

	contentfn – A function taking a list of ElementPositions and
returning a string containing html. The returned html
can depend on the list of positions, for example with a
table of contents near the start.

	rectfn –
A callable taking (rect_num: int, filled: Rect) and
returning (mediabox, rect, ctm):

	mediabox: None or rect for new page.

	rect: The next rect into which content should be placed.

	ctm: A Matrix.

	pagefn – None, or a callable taking (page_num, medibox,
dev, after); called at start (after=0) and end
(after=1) of each page.

	archive –

	add_header_ids – If true, we add unique ids to all header tags that
don’t already have an id. This can help automatic
generation of tables of contents.

	Returns:
	None.

	
write_with_links(rectfn, positionfn=None, pagefn=None)#
	Similar to write() except that we don’t have a writer arg
and we return a PDF Document in which links have been created
for each internal html link.

	
static write_stabilized_with_links(contentfn, rectfn, user_css=None, em=12, positionfn=None, pagefn=None, archive=None, add_header_ids=True)#
	Similar to write_stabilized() except that we don’t have a writer
arg and instead return a PDF Document in which links have been
created for each internal html link.

	
class FitResult#
	The result from a Story.fit*() method.

Members:

	big_enough:
	True if the fit succeeded.

	filled:
	From the last call to Story.place().

	more:
	False if the fit succeeded.

	numcalls:
	Number of calls made to self.place().

	parameter:
	The successful parameter value, or the largest failing value.

	Rect:
	The rect created from parameter.

	
fit(self, fn, pmin=None, pmax=None, delta=0.001, verbose=False)#
	Finds optimal rect that contains the story self.

Returns a Story.FitResult instance.

On success, the last call to self.place() will have been with the
returned rectangle, so self.draw() can be used directly.

	Parameters:
		fn –
A callable taking a floating point parameter and returning a
fitz.Rect(). If the rect is empty, we assume the story will
not fit and do not call self.place().

Must guarantee that self.place() behaves monotonically when
given rect fn(parameter) as parameter increases. This
usually means that both width and height increase or stay
unchanged as parameter increases.

	pmin – Minimum parameter to consider; None for -infinity.

	pmax – Maximum parameter to consider; None for +infinity.

	delta – Maximum error in returned parameter.

	verbose – If true we output diagnostics.

	
fit_scale(self, rect, scale_min=0, scale_max=None, delta=0.001, verbose=False)#
	Finds smallest value scale in range scale_min..scale_max where
scale * rect is large enough to contain the story self.

Returns a Story.FitResult instance.

	Parameters:
		width – width of rect.

	height – height of rect.

	scale_min – Minimum scale to consider; must be >= 0.

	scale_max – Maximum scale to consider, must be >= scale_min or None for
infinite.

	delta – Maximum error in returned scale.

	verbose – If true we output diagnostics.

	
fit_height(self, width, height_min=0, height_max=None, origin=(0, 0), delta=0.001, verbose=False)#
	Finds smallest height in range height_min..height_max where a rect
with size (width, height) is large enough to contain the story
self.

Returns a Story.FitResult instance.

	Parameters:
		width – width of rect.

	height_min – Minimum height to consider; must be >= 0.

	height_max – Maximum height to consider, must be >= height_min or None for
infinite.

	origin – (x0, y0) of rect.

	delta – Maximum error in returned height.

	verbose – If true we output diagnostics.

	
fit_width(self, height, width_min=0, width_max=None, origin=(0, 0), delta=0.001, verbose=False)#
	Finds smallest width in range width_min..width_max where a rect with size
(width, height) is large enough to contain the story self.

Returns a Story.FitResult instance.

	Parameters:
		height – height of rect.

	width_min – Minimum width to consider; must be >= 0.

	width_max – Maximum width to consider, must be >= width_min or None for
infinite.

	origin – (x0, y0) of rect.

	delta – Maximum error in returned width.

	verbose – If true we output diagnostics.

Element Positioning CallBack function#

The callback function can be used to log information about story output. The function’s access to the information is read-only: it has no way to influence the story’s output.

A typical loop for executing a story with using this method would look like this:

HTML = """
<html>
 <head></head>
 <body>
 <h1>Header level 1</h1>
 <h2>Header level 2</h2>
 <p>Hello MuPDF!</p>
 </body>
</html>
"""
MEDIABOX = fitz.paper_rect("letter") # size of a page
WHERE = MEDIABOX + (36, 36, -36, -36) # leave borders of 0.5 inches
story = fitz.Story(html=HTML) # make the story
writer = fitz.DocumentWriter("test.pdf") # make the writer
pno = 0 # current page number
more = 1 # will be set to 0 when done
while more: # loop until all story content is processed
 dev = writer.begin_page(MEDIABOX) # make a device to write on the page
 more, filled = story.place(WHERE) # compute content positions on page
 story.element_positions(recorder, {"page": pno}) # provide page number in addition
 story.draw(dev)
 writer.end_page()
 pno += 1 # increase page number
writer.close() # close output file

def recorder(elpos):
 pass

Attributes of the ElementPosition class#

Exactly one parameter must be passed to the function provided by Story.element_positions(). It is an object with the following attributes:

The parameter passed to the recorder function is an object with the following attributes:

	elpos.depth (int) – depth of this element in the box structure.

	elpos.heading (int) – the header level, 0 if no header, 1-6 for h1 - h6.

	elpos.href (str) – value of the href attribute, or None if not defined.

	elpos.id (str) – value of the id attribute, or None if not defined.

	elpos.rect (tuple) – element position on page.

	elpos.text (str) – immediate text of the element.

	elpos.open_close (int bit field) – bit 0 set: opens element, bit 1 set: closes element. Relevant for elements that may contain other elements and thus may not immediately be closed after being created / opened.

	elpos.rect_num (int) – count of rectangles filled by the story so far.

	elpos.page_num (int) – page number; only present when using fitz.Story.write*() functions.

Do you have any feedback on this page?

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer to licensing information at artifex.com or contact Artifex Software Inc., 39 Mesa Street, Suite 108A, San Francisco CA 94129, United States for further information.

This documentation covers all versions up to 1.23.25.

 Next

 TextPage

 Previous

 Shape

 Copyright © 2015-2024, Artifex

 Made with
 Furo

 Last updated on 21. Feb 2024

 On this page

 	Story	Story	Story.__init__()
	Story.place()
	Story.draw()
	Story.element_positions()
	Story.reset()
	Story.body
	Story.write()
	Story.write_stabilized()
	Story.write_with_links()
	Story.write_stabilized_with_links()
	Story.FitResult
	Story.fit()
	Story.fit_scale()
	Story.fit_height()
	Story.fit_width()

	Element Positioning CallBack function	Attributes of the ElementPosition class

