

 Hide navigation sidebar

 Hide table of contents sidebar

 Toggle site navigation sidebar

 PyMuPDF 1.23.25 documentation

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 PyMuPDF 1.23.25 documentation

 About

	Features Comparison
	Performance
	License and Copyright

User Guide

	Installation
	The Basics
	Tutorial

How to Guide

	Opening Files
	Text
	Images
	Annotations
	Drawing and Graphics
	Stories
	Journalling
	Multiprocessing
	Optional Content Support
	Low-Level Interfaces
	Common Issues and their Solutions

API Reference

	Module fitz
	ClassesToggle child pages in navigation
	Annot
	Archive
	Colorspace
	DisplayList
	Document
	DocumentWriter
	Font
	Identity
	IRect
	Link
	linkDest
	Matrix
	Outline
	Page
	Pixmap
	Point
	Quad
	Rect
	Shape
	Story
	TextPage
	TextWriter
	Tools
	Widget
	Xml

	Operator Algebra for Geometry Objects
	Low Level Functions and ClassesToggle child pages in navigation
	Functions
	Device
	Working together: DisplayList and TextPage

	Glossary
	Constants and Enumerations
	Color Database

Other

	Appendix 1: Details on Text Extraction
	Appendix 2: Considerations on Embedded Files
	Appendix 3: Assorted Technical Information
	Appendix 4: Performance Comparison Methodology
	Change Log
	Deprecated Names

 v: latest

 	Versions
	latest

 	Downloads
	pdf

 	On Read the Docs
	
 Project Home

	
 Builds

 Back to top

 Edit this page

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 English日本語

 Find #pymupdf on Discord

 Do you have any feedback on this page?

Font#

	New in v1.16.18

This class represents a font as defined in MuPDF (fz_font_s structure). It is required for the new class TextWriter and the new Page.write_text(). Currently, it has no connection to how fonts are used in methods Page.insert_text() or Page.insert_textbox(), respectively.

A Font object also contains useful general information, like the font bbox, the number of defined glyphs, glyph names or the bbox of a single glyph.

	Method / Attribute
	Short Description

	glyph_advance()
	Width of a character

	glyph_bbox()
	Glyph rectangle

	glyph_name_to_unicode()
	Get unicode from glyph name

	has_glyph()
	Return glyph id of unicode

	text_length()
	Compute string length

	char_lengths()
	Tuple of char widths of a string

	unicode_to_glyph_name()
	Get glyph name of a unicode

	valid_codepoints()
	Array of supported unicodes

	ascender
	Font ascender

	descender
	Font descender

	bbox
	Font rectangle

	buffer
	Copy of the font’s binary image

	flags
	Collection of font properties

	glyph_count
	Number of supported glyphs

	name
	Name of font

	is_writable
	Font usable with TextWriter

Class API

	
class Font#
		
__init__(self, fontname=None, fontfile=None,
	
fontbuffer=None, script=0, language=None, ordering=-1, is_bold=0,
	
is_italic=0, is_serif=0)
	Font constructor. The large number of parameters are used to locate font, which most closely resembles the requirements. Not all parameters are ever required – see the below pseudo code explaining the logic how the parameters are evaluated.

	Parameters:
		fontname (str) –
one of the PDF Base 14 Fonts or CJK fontnames. Also possible are a select few other names like (watch the correct spelling): “Arial”, “Times”, “Times Roman”.

(Changed in v1.17.5)

If you have installed pymupdf-fonts, there are also new “reserved” fontnames available, which are listed in fitz_fonts and in the table further down.

	fontfile (str) – the filename of a fontfile somewhere on your system [1].

	fontbuffer (bytes,bytearray,io.BytesIO) – a fontfile loaded in memory [1].

	script (in) – the number of a UCDN script. Currently supported in PyMuPDF are numbers 24, and 32 through 35.

	language (str) – one of the values “zh-Hant” (traditional Chinese), “zh-Hans” (simplified Chinese), “ja” (Japanese) and “ko” (Korean). Otherwise, all ISO 639 codes from the subsets 1, 2, 3 and 5 are also possible, but are currently documentary only.

	ordering (int) – an alternative selector for one of the CJK fonts.

	is_bold (bool) – look for a bold font.

	is_italic (bool) – look for an italic font.

	is_serif (bool) – look for a serifed font.

	Returns:
	
a MuPDF font if successful. This is the overall sequence of checks to determine an appropriate font:

	Argument
	Action

	fontfile?
	Create font from file, exception if failure.

	fontbuffer?
	Create font from buffer, exception if failure.

	ordering>=0
	Create universal font, always succeeds.

	fontname?
	Create a Base-14 font, universal font, or font
provided by pymupdf-fonts. See table below.

Note

With the usual reserved names “helv”, “tiro”, etc., you will create fonts with the expected names “Helvetica”, “Times-Roman” and so on. However, and in contrast to Page.insert_font() and friends,

	a font file will always be embedded in your PDF,

	Greek and Cyrillic characters are supported without needing the encoding parameter.

Using ordering >= 0, or fontnames “cjk”, “china-t”, “china-s”, “japan” or “korea” will always create the same “universal” font “Droid Sans Fallback Regular”. This font supports all Chinese, Japanese, Korean and Latin characters, including Greek and Cyrillic. This is a sans-serif font.

Actually, you would rarely ever need another sans-serif font than “Droid Sans Fallback Regular”. Except that this font file is relatively large and adds about 1.65 MB (compressed) to your PDF file size. If you do not need CJK support, stick with specifying “helv”, “tiro” etc., and you will get away with about 35 KB compressed.

If you know you have a mixture of CJK and Latin text, consider just using Font("cjk") because this supports everything and also significantly (by a factor of up to three) speeds up execution: MuPDF will always find any character in this single font and never needs to check fallbacks.

But if you do use some other font, you will still automatically be able to also write CJK characters: MuPDF detects this situation and silently falls back to the universal font (which will then of course also be embedded in your PDF).

(New in v1.17.5) Optionally, some new “reserved” fontname codes become available if you install pymupdf-fonts, pip install pymupdf-fonts. “Fira Mono” is a mono-spaced sans font set and FiraGO is another non-serifed “universal” font set which supports all Latin (including Cyrillic and Greek) plus Thai, Arabian, Hewbrew and Devanagari – but none of the CJK languages. The size of a FiraGO font is only a quarter of the “Droid Sans Fallback” size (compressed 400 KB vs. 1.65 MB) – and it provides the weights bold, italic, bold-italic – which the universal font doesn’t.

“Space Mono” is another nice and small mono-spaced font from Google Fonts, which supports Latin Extended characters and comes with all 4 important weights.

The following table maps a fontname code to the corresponding font. For the current content of the package please see its documentation:

	Code
	Fontname
	New in
	Comment

	figo
	FiraGO Regular
	v1.0.0
	narrower than Helvetica

	figbo
	FiraGO Bold
	v1.0.0
	
	figit
	FiraGO Italic
	v1.0.0
	
	figbi
	FiraGO Bold Italic
	v1.0.0
	
	fimo
	Fira Mono Regular
	v1.0.0
	
	fimbo
	Fira Mono Bold
	v1.0.0
	
	spacemo
	Space Mono Regular
	v1.0.1
	
	spacembo
	Space Mono Bold
	v1.0.1
	
	spacemit
	Space Mono Italic
	v1.0.1
	
	spacembi
	Space Mono Bold-Italic
	v1.0.1
	
	math
	Noto Sans Math Regular
	v1.0.2
	math symbols

	music
	Noto Music Regular
	v1.0.2
	musical symbols

	symbol1
	Noto Sans Symbols Regular
	v1.0.2
	replacement for “symb”

	symbol2
	Noto Sans Symbols2 Regular
	v1.0.2
	extended symbol set

	notos
	Noto Sans Regular
	v1.0.3
	alternative to Helvetica

	notosit
	Noto Sans Italic
	v1.0.3
	
	notosbo
	Noto Sans Bold
	v1.0.3
	
	notosbi
	Noto Sans BoldItalic
	v1.0.3
	

	
has_glyph(chr, language=None, script=0, fallback=False)#
	Check whether the unicode chr exists in the font or (option) some fallback font. May be used to check whether any “TOFU” symbols will appear on output.

	Parameters:
		chr (int) – the unicode of the character (i.e. ord()).

	language (str) – the language – currently unused.

	script (int) – the UCDN script number.

	fallback (bool) – (new in v1.17.5) perform an extended search in fallback fonts or restrict to current font (default).

	Returns:
	(changed in 1.17.7) the glyph number. Zero indicates no glyph found.

	
valid_codepoints()#
		New in v1.17.5

Return an array of unicodes supported by this font.

	Returns:
	
an array.array [2] of length at most Font.glyph_count. I.e. chr() of every item in this array has a glyph in the font without using fallbacks. This is an example display of the supported glyphs:

>>> import fitz
>>> font = fitz.Font("math")
>>> vuc = font.valid_codepoints()
>>> for i in vuc:
 print("%04X %s (%s)" % (i, chr(i), font.unicode_to_glyph_name(i)))
0000
000D (CR)
0020 (space)
0021 ! (exclam)
0022 " (quotedbl)
0023 # (numbersign)
0024 $ (dollar)
0025 % (percent)
...
00AC ¬ (logicalnot)
00B1 ± (plusminus)
...
21D0 ⇐ (arrowdblleft)
21D1 ⇑ (arrowdblup)
21D2 ⇒ (arrowdblright)
21D3 ⇓ (arrowdbldown)
21D4 ⇔ (arrowdblboth)
...
221E ∞ (infinity)
...

Note

This method only returns meaningful data for fonts having a CMAP (character map, charmap, the /ToUnicode PDF key). Otherwise, this array will have length 1 and contain zero only.

	
glyph_advance(chr, language=None, script=0, wmode=0)#
	Calculate the “width” of the character’s glyph (visual representation).

	Parameters:
		chr (int) – the unicode number of the character. Use ord(), not the character itself. Again, this should normally work even if a character is not supported by that font, because fallback fonts will be checked where necessary.

	wmode (int) – write mode, 0 = horizontal, 1 = vertical.

The other parameters are not in use currently.

	Returns:
	a float representing the glyph’s width relative to fontsize 1.

	
glyph_name_to_unicode(name)#
	Return the unicode value for a given glyph name. Use it in conjunction with chr() if you want to output e.g. a certain symbol.

	Parameters:
	name (str) – The name of the glyph.

	Returns:
	
The unicode integer, or 65533 = 0xFFFD if the name is unknown. Examples: font.glyph_name_to_unicode("Sigma") = 931, font.glyph_name_to_unicode("sigma") = 963. Refer to the Adobe Glyph List publication for a list of glyph names and their unicode numbers. Example:

>>> font = fitz.Font("helv")
>>> font.has_glyph(font.glyph_name_to_unicode("infinity"))
True

	
glyph_bbox(chr, language=None, script=0)#
	The glyph rectangle relative to fontsize 1.

	Parameters:
	chr (int) – ord() of the character.

	Returns:
	a Rect.

	
unicode_to_glyph_name(ch)#
	Show the name of the character’s glyph.

	Parameters:
	ch (int) – the unicode number of the character. Use ord(), not the character itself.

	Returns:
	
a string representing the glyph’s name. E.g. font.glyph_name(ord("#")) = "numbersign". For an invalid code “.notfound” is returned.

Note

(Changed in v1.18.0) This method and Font.glyph_name_to_unicode() no longer depend on a font and instead retrieve information from the Adobe Glyph List. Also available as fitz.unicode_to_glyph_name() and resp. fitz.glyph_name_to_unicode().

	
text_length(text, fontsize=11)#
	Calculate the length in points of a unicode string.

Note

There is a functional overlap with get_text_length() for Base-14 fonts only.

	Parameters:
		text (str) – a text string, UTF-8 encoded.

	fontsize (float) – the fontsize.

	Return type:
	float

	Returns:
	
the length of the string in points when stored in the PDF. If a character is not contained in the font, it will automatically be looked up in a fallback font.

Note

This method was originally implemented in Python, based on calling Font.glyph_advance(). For performance reasons, it has been rewritten in C for v1.18.14. To compute the width of a single character, you can now use either of the following without performance penalty:

	font.glyph_advance(ord("Ä")) * fontsize

	font.text_length("Ä", fontsize=fontsize)

For multi-character strings, the method offers a huge performance advantage compared to the previous implementation: instead of about 0.5 microseconds for each character, only 12.5 nanoseconds are required for the second and subsequent ones.

	
char_lengths(text, fontsize=11)#
	New in v1.18.14

Sequence of character lengths in points of a unicode string.

	Parameters:
		text (str) – a text string, UTF-8 encoded.

	fontsize (float) – the fontsize.

	Return type:
	tuple

	Returns:
	
the lengths in points of the characters of a string when stored in the PDF. It works like Font.text_length() broken down to single characters. This is a high speed method, used e.g. in TextWriter.fill_textbox(). The following is true (allowing rounding errors): font.text_length(text) == sum(font.char_lengths(text)).

>>> font = fitz.Font("helv")
>>> text = "PyMuPDF"
>>> font.text_length(text)
50.115999937057495
>>> fitz.get_text_length(text, fontname="helv")
50.115999937057495
>>> sum(font.char_lengths(text))
50.115999937057495
>>> pprint(font.char_lengths(text))
(7.336999952793121, # P
5.5, # y
9.163000047206879, # M
6.115999937057495, # u
7.336999952793121, # P
7.942000031471252, # D
6.721000015735626) # F

	
buffer#
		New in v1.17.6

Copy of the binary font file content.

	Return type:
	bytes

	
flags#
	A dictionary with various font properties, each represented as bools. Example for Helvetica:

>>> pprint(font.flags)
{'bold': 0,
'fake-bold': 0,
'fake-italic': 0,
'invalid-bbox': 0,
'italic': 0,
'mono': 0,
'opentype': 0,
'serif': 1,
'stretch': 0,
'substitute': 0}

	Return type:
	dict

	
name#
		Return type:
	str

Name of the font. May be “” or “(null)”.

	
bbox#
	The font bbox. This is the maximum of its glyph bboxes.

	Return type:
	Rect

	
glyph_count#
		Return type:
	int

The number of glyphs defined in the font.

	
ascender#
		New in v1.18.0

The ascender value of the font, see here for details. Please note that there is a difference to the strict definition: our value includes everything above the baseline – not just the height difference between upper case “A” and and lower case “a”.

	Return type:
	float

	
descender#
		New in v1.18.0

The descender value of the font, see here for details. This value always is negative and is the portion that some glyphs descend below the base line, for example “g” or “y”. As a consequence, the value ascender - descender is the total height, that every glyph of the font fits into. This is true at least for most fonts – as always, there are exceptions, especially for calligraphic fonts, etc.

	Return type:
	float

	
is_writable#
		New in v1.18.0

Indicates whether this font can be used with TextWriter.

	Return type:
	bool

Footnotes

[1]
(1,2)
MuPDF does not support all fontfiles with this feature and will raise exceptions like “mupdf: FT_New_Memory_Face((null)): unknown file format”, if it encounters issues. The TextWriter methods check Font.is_writable.

[2]
The built-in module array has been chosen for its speed and its compact representation of values.

Do you have any feedback on this page?

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer to licensing information at artifex.com or contact Artifex Software Inc., 39 Mesa Street, Suite 108A, San Francisco CA 94129, United States for further information.

This documentation covers all versions up to 1.23.25.

 Next

 Identity

 Previous

 DocumentWriter

 Copyright © 2015-2024, Artifex

 Made with
 Furo

 Last updated on 21. Feb 2024

 On this page

 	Font	Font	Font.has_glyph()
	Font.valid_codepoints()
	Font.glyph_advance()
	Font.glyph_name_to_unicode()
	Font.glyph_bbox()
	Font.unicode_to_glyph_name()
	Font.text_length()
	Font.char_lengths()
	Font.buffer
	Font.flags
	Font.name
	Font.bbox
	Font.glyph_count
	Font.ascender
	Font.descender
	Font.is_writable

