

 Hide navigation sidebar

 Hide table of contents sidebar

 Toggle site navigation sidebar

 PyMuPDF 1.23.25 documentation

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 PyMuPDF 1.23.25 documentation

 About

	Features Comparison
	Performance
	License and Copyright

User Guide

	Installation
	The Basics
	Tutorial

How to Guide

	Opening Files
	Text
	Images
	Annotations
	Drawing and Graphics
	Stories
	Journalling
	Multiprocessing
	Optional Content Support
	Low-Level Interfaces
	Common Issues and their Solutions

API Reference

	Module fitz
	ClassesToggle child pages in navigation
	Annot
	Archive
	Colorspace
	DisplayList
	Document
	DocumentWriter
	Font
	Identity
	IRect
	Link
	linkDest
	Matrix
	Outline
	Page
	Pixmap
	Point
	Quad
	Rect
	Shape
	Story
	TextPage
	TextWriter
	Tools
	Widget
	Xml

	Operator Algebra for Geometry Objects
	Low Level Functions and ClassesToggle child pages in navigation
	Functions
	Device
	Working together: DisplayList and TextPage

	Glossary
	Constants and Enumerations
	Color Database

Other

	Appendix 1: Details on Text Extraction
	Appendix 2: Considerations on Embedded Files
	Appendix 3: Assorted Technical Information
	Appendix 4: Performance Comparison Methodology
	Change Log
	Deprecated Names

 v: latest

 	Versions
	latest

 	Downloads
	pdf

 	On Read the Docs
	
 Project Home

	
 Builds

 Back to top

 Edit this page

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 English日本語

 Find #pymupdf on Discord

 Do you have any feedback on this page?

Operator Algebra for Geometry Objects#

Instances of classes Point, IRect, Rect, Quad and Matrix are collectively also called “geometry” objects.

They all are special cases of Python sequences, see Using Python Sequences as Arguments in PyMuPDF for more background.

We have defined operators for these classes that allow dealing with them (almost) like ordinary numbers in terms of addition, subtraction, multiplication, division, and some others.

This chapter is a synopsis of what is possible.

General Remarks#

	Operators can be either binary (i.e. involving two objects) or unary.

	The resulting type of binary operations is either a new object of the left operand’s class or a bool.

	The result of unary operations is either a new object of the same class, a bool or a float.

	The binary operators +, -, *, / are defined for all classes. They roughly do what you would expect – except, that the second operand …

	may always be a number which then performs the operation on every component of the first one,

	may always be a numeric sequence of the same length (2, 4 or 6) – we call such sequences point_like, rect_like, quad_like or matrix_like, respectively.

	Rectangles support additional binary operations: intersection (operator “&”), union (operator “|”) and containment checking.

	Binary operators fully support in-place operations, so expressions like a /= b are valid if b is numeric or “a_like”.

Unary Operations#

	Oper.
	Result

	bool(OBJ)
	is false exactly if all components of OBJ are zero

	abs(OBJ)
	the rectangle area – equal to norm(OBJ) for the other types

	norm(OBJ)
	square root of the component squares (Euclidean norm)

	+OBJ
	new copy of OBJ

	-OBJ
	new copy of OBJ with negated components

	~m
	inverse of matrix “m”, or the null matrix if not invertible

Binary Operations#

For every geometry object “a” and every number “b”, the operations “a ° b” and “a °= b” are always defined for the operators +, -, *, /. The respective operation is simply executed for each component of “a”. If the second operand is not a number, then the following is defined:

	Oper.
	Result

	a+b, a-b
	component-wise execution, “b” must be “a-like”.

	a*m, a/m
	“a” can be a point, rectangle or matrix, but “m” must be
matrix_like. “a/m” is treated as “a*~m” (see note below
for non-invertible matrices). If “a” is a point or a rectangle,
then “a.transform(m)” is executed. If “a” is a matrix, then
matrix concatenation takes place.

	a&b
	intersection rectangle: “a” must be a rectangle and
“b” rect_like. Delivers the largest rectangle
contained in both operands.

	a|b
	union rectangle: “a” must be a rectangle, and “b” may be
point_like or rect_like.
Delivers the smallest rectangle containing both operands.

	b in a
	if “b” is a number, then b in tuple(a) is returned.
If “b” is point_like, rect_like or quad_like,
then “a” must be a rectangle, and a.contains(b) is returned.

	a == b
	True if bool(a-b) is False (“b” may be “a-like”).

Note

Please note an important difference to usual arithmetic:

Matrix multiplication is not commutative, i.e. in general we have m*n != n*m for two matrices. Also, there are non-zero matrices which have no inverse, for example m = Matrix(1, 0, 1, 0, 1, 0). If you try to divide by any of these, you will receive a ZeroDivisionError exception using operator “/”, e.g. for the expression fitz.Identity / m. But if you formulate fitz.Identity * ~m, the result will be fitz.Matrix() (the null matrix).

Admittedly, this represents an inconsistency, and we are considering to remove it. For the time being, you can choose to avoid an exception and check whether ~m is the null matrix, or accept a potential ZeroDivisionError by using fitz.Identity / m.

Note

	With these conventions, all the usual algebra rules apply. For example, arbitrarily using brackets (among objects of the same class!) is possible: if r1, r2 are rectangles and m1, m2 are matrices, you can do this (r1 + r2) * m1 * m2.

	For all objects of the same class, a + b + c == (a + b) + c == a + (b + c) is true.

	For matrices in addition the following is true: (m1 + m2) * m3 == m1 * m3 + m2 * m3 (distributivity property).

		But the sequence of applying matrices is important: If r is a rectangle and m1, m2 are matrices, then – caution!:
		r * m1 * m2 == (r * m1) * m2 != r * (m1 * m2)

Some Examples#

Manipulation with numbers#

For the usual arithmetic operations, numbers are always allowed as second operand. In addition, you can formulate "x in OBJ", where x is a number. It is implemented as "x in tuple(OBJ)":

>>> fitz.Rect(1, 2, 3, 4) + 5
fitz.Rect(6.0, 7.0, 8.0, 9.0)
>>> 3 in fitz.Rect(1, 2, 3, 4)
True
>>>

The following will create the upper left quarter of a document page rectangle:

>>> page.rect
Rect(0.0, 0.0, 595.0, 842.0)
>>> page.rect / 2
Rect(0.0, 0.0, 297.5, 421.0)
>>>

The following will deliver the middle point of a line that connects two points p1 and p2:

>>> p1 = fitz.Point(1, 2)
>>> p2 = fitz.Point(4711, 3141)
>>> mp = (p1 + p2) / 2
>>> mp
Point(2356.0, 1571.5)
>>>

Manipulation with “like” Objects#

The second operand of a binary operation can always be “like” the left operand. “Like” in this context means “a sequence of numbers of the same length”. With the above examples:

>>> p1 + p2
Point(4712.0, 3143.0)
>>> p1 + (4711, 3141)
Point(4712.0, 3143.0)
>>> p1 += (4711, 3141)
>>> p1
Point(4712.0, 3143.0)
>>>

To shift a rectangle for 5 pixels to the right, do this:

>>> fitz.Rect(100, 100, 200, 200) + (5, 0, 5, 0) # add 5 to the x coordinates
Rect(105.0, 100.0, 205.0, 200.0)
>>>

Points, rectangles and matrices can be transformed with matrices. In PyMuPDF, we treat this like a “multiplication” (or resp. “division”), where the second operand may be “like” a matrix. Division in this context means “multiplication with the inverted matrix”:

>>> m = fitz.Matrix(1, 2, 3, 4, 5, 6)
>>> n = fitz.Matrix(6, 5, 4, 3, 2, 1)
>>> p = fitz.Point(1, 2)
>>> p * m
Point(12.0, 16.0)
>>> p * (1, 2, 3, 4, 5, 6)
Point(12.0, 16.0)
>>> p / m
Point(2.0, -2.0)
>>> p / (1, 2, 3, 4, 5, 6)
Point(2.0, -2.0)
>>>
>>> m * n # matrix multiplication
Matrix(14.0, 11.0, 34.0, 27.0, 56.0, 44.0)
>>> m / n # matrix division
Matrix(2.5, -3.5, 3.5, -4.5, 5.5, -7.5)
>>>
>>> m / m # result is equal to the Identity matrix
Matrix(1.0, 0.0, 0.0, 1.0, 0.0, 0.0)
>>>
>>> # look at this non-invertible matrix:
>>> m = fitz.Matrix(1, 0, 1, 0, 1, 0)
>>> ~m
Matrix(0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
>>> # we try dividing by it in two ways:
>>> p = fitz.Point(1, 2)
>>> p * ~m # this delivers point (0, 0):
Point(0.0, 0.0)
>>> p / m # but this is an exception:
Traceback (most recent call last):
 File "<pyshell#6>", line 1, in <module>
 p / m
 File "... /site-packages/fitz/fitz.py", line 869, in __truediv__
 raise ZeroDivisionError("matrix not invertible")
ZeroDivisionError: matrix not invertible
>>>

As a specialty, rectangles support additional binary operations:

	intersection – the common area of rectangle-likes, operator “&”

	inclusion – enlarge to include a point-like or rect-like, operator “|”

	containment check – whether a point-like or rect-like is inside

Here is an example for creating the smallest rectangle enclosing given points:

>>> # first define some point-likes
>>> points = []
>>> for i in range(10):
 for j in range(10):
 points.append((i, j))
>>>
>>> # now create a rectangle containing all these 100 points
>>> # start with an empty rectangle
>>> r = fitz.Rect(points[0], points[0])
>>> for p in points[1:]: # and include remaining points one by one
 r |= p
>>> r # here is the to be expected result:
Rect(0.0, 0.0, 9.0, 9.0)
>>> (4, 5) in r # this point-like lies inside the rectangle
True
>>> # and this rect-like is also inside
>>> (4, 4, 5, 5) in r
True
>>>

Do you have any feedback on this page?

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer to licensing information at artifex.com or contact Artifex Software Inc., 39 Mesa Street, Suite 108A, San Francisco CA 94129, United States for further information.

This documentation covers all versions up to 1.23.25.

 Next

 Low Level Functions and Classes

 Previous

 Xml

 Copyright © 2015-2024, Artifex

 Made with
 Furo

 Last updated on 21. Feb 2024

 On this page

 	Operator Algebra for Geometry Objects	General Remarks
	Unary Operations
	Binary Operations
	Some Examples	Manipulation with numbers
	Manipulation with “like” Objects

