MuPDF has no integrated support for threading - calling itself “thread-agnostic”. While there do exist tricky possibilities to still use threading with MuPDF, the baseline consequence for PyMuPDF is:

No Python threading support.

Using PyMuPDF in a Python threading environment will lead to blocking effects for the main thread.

However, there is the option to use Python’s multiprocessing module in a variety of ways.

If you are looking to speed up page-oriented processing for a large document, use this script as a starting point. It should be at least twice as fast as the corresponding sequential processing.

See code

Demonstrate the use of multiprocessing with PyMuPDF.

Depending on the  number of CPUs, the document is divided in page ranges.
Each range is then worked on by one process.
The type of work would typically be text extraction or page rendering. Each
process must know where to put its results, because this processing pattern
does not include inter-process communication or data sharing.

Compared to sequential processing, speed improvements in range of 100% (ie.
twice as fast) or better can be expected.
from __future__ import print_function, division
import sys
import os
import time
from multiprocessing import Pool, cpu_count
import pymupdf

# choose a version specific timer function (bytes == str in Python 2)
mytime = time.clock if str is bytes else time.perf_counter

def render_page(vector):
    """Render a page range of a document.

        The PyMuPDF document cannot be part of the argument, because that
        cannot be pickled. So we are being passed in just its filename.
        This is no performance issue, because we are a separate process and
        need to open the document anyway.
        Any page-specific function can be processed here - rendering is just
        an example - text extraction might be another.
        The work must however be self-contained: no inter-process communication
        or synchronization is possible with this design.
        Care must also be taken with which parameters are contained in the
        argument, because it will be passed in via pickling by the Pool class.
        So any large objects will increase the overall duration.
        vector: a list containing required parameters.
    # recreate the arguments
    idx = vector[0]  # this is the segment number we have to process
    cpu = vector[1]  # number of CPUs
    filename = vector[2]  # document filename
    mat = vector[3]  # the matrix for rendering
    doc =  # open the document
    num_pages = doc.page_count  # get number of pages

    # pages per segment: make sure that cpu * seg_size >= num_pages!
    seg_size = int(num_pages / cpu + 1)
    seg_from = idx * seg_size  # our first page number
    seg_to = min(seg_from + seg_size, num_pages)  # last page number

    for i in range(seg_from, seg_to):  # work through our page segment
        page = doc[i]
        # page.get_text("rawdict")  # use any page-related type of work here, eg
        pix = page.get_pixmap(alpha=False, matrix=mat)
        # store away the result somewhere ...
        #"p-%i.png" % i)
    print("Processed page numbers %i through %i" % (seg_from, seg_to - 1))

if __name__ == "__main__":
    t0 = mytime()  # start a timer
    filename = sys.argv[1]
    mat = pymupdf.Matrix(0.2, 0.2)  # the rendering matrix: scale down to 20%
    cpu = cpu_count()

    # make vectors of arguments for the processes
    vectors = [(i, cpu, filename, mat) for i in range(cpu)]
    print("Starting %i processes for '%s'." % (cpu, filename))

    pool = Pool()  # make pool of 'cpu_count()' processes, vectors, 1)  # start processes passing each a vector

    t1 = mytime()  # stop the timer
    print("Total time %g seconds" % round(t1 - t0, 2))

Here is a more complex example involving inter-process communication between a main process (showing a GUI) and a child process doing PyMuPDF access to a document.

See code

Created on 2019-05-01

@copyright: 2019
@license: GNU AFFERO GPL 3.0

Demonstrate the use of multiprocessing with PyMuPDF
This example shows some more advanced use of multiprocessing.
The main process show a Qt GUI and establishes a 2-way communication with
another process, which accesses a supported document.
import os
import sys
import time
import multiprocessing as mp
import queue
import pymupdf

''' PyQt and PySide namespace unifier shim
    simple "if 'PyQt6' in sys.modules:" test fails for me, so the more complex pkgutil use
    overkill for most people who might have one or the other, why both?

from pkgutil import iter_modules

def module_exists(module_name):
    return module_name in (name for loader, name, ispkg in iter_modules())

if  module_exists("PyQt6"):
    # PyQt6
    from PyQt6 import QtGui, QtWidgets, QtCore
    from PyQt6.QtCore import pyqtSignal as Signal, pyqtSlot as Slot
    wrapper = "PyQt6"

elif module_exists("PySide6"):
    # PySide6
    from PySide6 import QtGui, QtWidgets, QtCore
    from PySide6.QtCore import Signal, Slot
    wrapper = "PySide6"

my_timer = time.clock if str is bytes else time.perf_counter

class DocForm(QtWidgets.QWidget):
    def __init__(self):
        self.process = None
        self.queNum = mp.Queue()
        self.queDoc = mp.Queue()
        self.page_count = 0
        self.curPageNum = 0
        self.lastDir = ""
        self.timerSend = QtCore.QTimer(self)
        self.timerGet = QtCore.QTimer(self)
        self.timerWaiting = QtCore.QTimer(self)

    def initUI(self):
        vbox = QtWidgets.QVBoxLayout()

        hbox = QtWidgets.QHBoxLayout()
        self.btnOpen = QtWidgets.QPushButton("OpenDocument", self)

        self.btnPlay = QtWidgets.QPushButton("PlayDocument", self)

        self.btnStop = QtWidgets.QPushButton("Stop", self)

        self.label = QtWidgets.QLabel("0/0", self)
        self.label.setFont(QtGui.QFont("Verdana", 20))


        self.labelImg = QtWidgets.QLabel("Document", self)
        sizePolicy = QtWidgets.QSizePolicy(
            QtWidgets.QSizePolicy.Policy.Preferred, QtWidgets.QSizePolicy.Policy.Expanding

        self.setGeometry(100, 100, 400, 600)
        self.setWindowTitle("PyMuPDF Document Player")

    def openDoc(self):
        path, _ = QtWidgets.QFileDialog.getOpenFileName(
            "Open Document",
            "All Supported Files (*.pdf;*.epub;*.xps;*.oxps;*.cbz;*.fb2);;PDF Files (*.pdf);;EPUB Files (*.epub);;XPS Files (*.xps);;OpenXPS Files (*.oxps);;CBZ Files (*.cbz);;FB2 Files (*.fb2)",
        if path:
            self.lastDir, self.file = os.path.split(path)
            if self.process:
                self.queNum.put(-1)  # use -1 to notify the process to exit
            self.curPageNum = 0
            self.page_count = 0
            self.process = mp.Process(
                target=openDocInProcess, args=(path, self.queNum, self.queDoc)
            self.startTime = time.perf_counter()

    def playDoc(self):

    def stopPlay(self):

    def onTimerSendPageNum(self):
        if self.curPageNum < self.page_count - 1:
            self.queNum.put(self.curPageNum + 1)

    def onTimerGetPage(self):
            ret = self.queDoc.get(False)
            if isinstance(ret, int):
                self.page_count = ret
                self.label.setText("{}/{}".format(self.curPageNum + 1, self.page_count))
            else:  # tuple, pixmap info
                num, samples, width, height, stride, alpha = ret
                self.curPageNum = num
                self.label.setText("{}/{}".format(self.curPageNum + 1, self.page_count))
                fmt = (
                    if alpha
                    else QtGui.QImage.Format.Format_RGB888
                qimg = QtGui.QImage(samples, width, height, stride, fmt)
        except queue.Empty as ex:

    def onTimerWaiting(self):
            'Loading "{}", {:.2f}s'.format(
                self.file, time.perf_counter() - self.startTime

    def closeEvent(self, event):

def openDocInProcess(path, queNum, quePageInfo):
    start = my_timer()
    doc =
    end = my_timer()
    while True:
        num = queNum.get()
        if num < 0:
        page = doc.load_page(num)
        pix = page.get_pixmap()
            (num, pix.samples, pix.width, pix.height, pix.stride, pix.alpha)
    print("process exit")

if __name__ == "__main__":
    app = QtWidgets.QApplication(sys.argv)
    form = DocForm()

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer to licensing information at or contact Artifex Software Inc., 39 Mesa Street, Suite 108A, San Francisco CA 94129, United States for further information.

Discord logo