

 Hide navigation sidebar

 Hide table of contents sidebar

 Toggle site navigation sidebar

 PyMuPDF 1.23.25 documentation

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 PyMuPDF 1.23.25 documentation

 About

	Features Comparison
	Performance
	License and Copyright

User Guide

	Installation
	The Basics
	Tutorial

How to Guide

	Opening Files
	Text
	Images
	Annotations
	Drawing and Graphics
	Stories
	Journalling
	Multiprocessing
	Optional Content Support
	Low-Level Interfaces
	Common Issues and their Solutions

API Reference

	Module fitz
	ClassesToggle child pages in navigation
	Annot
	Archive
	Colorspace
	DisplayList
	Document
	DocumentWriter
	Font
	Identity
	IRect
	Link
	linkDest
	Matrix
	Outline
	Page
	Pixmap
	Point
	Quad
	Rect
	Shape
	Story
	TextPage
	TextWriter
	Tools
	Widget
	Xml

	Operator Algebra for Geometry Objects
	Low Level Functions and ClassesToggle child pages in navigation
	Functions
	Device
	Working together: DisplayList and TextPage

	Glossary
	Constants and Enumerations
	Color Database

Other

	Appendix 1: Details on Text Extraction
	Appendix 2: Considerations on Embedded Files
	Appendix 3: Assorted Technical Information
	Appendix 4: Performance Comparison Methodology
	Change Log
	Deprecated Names

 v: latest

 	Versions
	latest

 	Downloads
	pdf

 	On Read the Docs
	
 Project Home

	
 Builds

 Back to top

 Edit this page

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 English日本語

 Find #pymupdf on Discord

 Do you have any feedback on this page?

Common Issues and their Solutions#

How To Dynamically Clean Up Corrupt PDFs#

This shows a potential use of PyMuPDF with another Python PDF library (the excellent pure Python package pdfrw is used here as an example).

If a clean, non-corrupt / decompressed PDF is needed, one could dynamically invoke PyMuPDF to recover from many problems like so:

import sys
from io import BytesIO
from pdfrw import PdfReader
import fitz

#---------------------------------------
'Tolerant' PDF reader
#---------------------------------------
def reader(fname, password = None):
 idata = open(fname, "rb").read() # read the PDF into memory and
 ibuffer = BytesIO(idata) # convert to stream
 if password is None:
 try:
 return PdfReader(ibuffer) # if this works: fine!
 except:
 pass

 # either we need a password or it is a problem-PDF
 # create a repaired / decompressed / decrypted version
 doc = fitz.open("pdf", ibuffer)
 if password is not None: # decrypt if password provided
 rc = doc.authenticate(password)
 if not rc > 0:
 raise ValueError("wrong password")
 c = doc.tobytes(garbage=3, deflate=True)
 del doc # close & delete doc
 return PdfReader(BytesIO(c)) # let pdfrw retry
#---------------------------------------
Main program
#---------------------------------------
pdf = reader("pymupdf.pdf", password = None) # include a password if necessary
print pdf.Info
do further processing

With the command line utility pdftk (available for Windows only, but reported to also run under Wine) a similar result can be achieved, see here. However, you must invoke it as a separate process via subprocess.Popen, using stdin and stdout as communication vehicles.

How to Convert Any Document to PDF#

Here is a script that converts any PyMuPDF supported document to a PDF. These include XPS, EPUB, FB2, CBZ and image formats, including multi-page TIFF images.

It features maintaining any metadata, table of contents and links contained in the source document:

"""
Demo script: Convert input file to a PDF

Intended for multi-page input files like XPS, EPUB etc.

Features:

Recovery of table of contents and links of input file.
While this works well for bookmarks (outlines, table of contents),
links will only work if they are not of type "LINK_NAMED".
This link type is skipped by the script.

For XPS and EPUB input, internal links however **are** of type "LINK_NAMED".
Base library MuPDF does not resolve them to page numbers.

So, for anyone expert enough to know the internal structure of these
document types, can further interpret and resolve these link types.

Dependencies

PyMuPDF v1.14.0+
"""
import sys
import fitz
if not (list(map(int, fitz.VersionBind.split("."))) >= [1,14,0]):
 raise SystemExit("need PyMuPDF v1.14.0+")
fn = sys.argv[1]

print("Converting '%s' to '%s.pdf'" % (fn, fn))

doc = fitz.open(fn)

b = doc.convert_to_pdf() # convert to pdf
pdf = fitz.open("pdf", b) # open as pdf

toc= doc.het_toc() # table of contents of input
pdf.set_toc(toc) # simply set it for output
meta = doc.metadata # read and set metadata
if not meta["producer"]:
 meta["producer"] = "PyMuPDF v" + fitz.VersionBind

if not meta["creator"]:
 meta["creator"] = "PyMuPDF PDF converter"
meta["modDate"] = fitz.get_pdf_now()
meta["creationDate"] = meta["modDate"]
pdf.set_metadata(meta)

now process the links
link_cnti = 0
link_skip = 0
for pinput in doc: # iterate through input pages
 links = pinput.get_links() # get list of links
 link_cnti += len(links) # count how many
 pout = pdf[pinput.number] # read corresp. output page
 for l in links: # iterate though the links
 if l["kind"] == fitz.LINK_NAMED: # we do not handle named links
 print("named link page", pinput.number, l)
 link_skip += 1 # count them
 continue
 pout.insert_link(l) # simply output the others

save the conversion result
pdf.save(fn + ".pdf", garbage=4, deflate=True)
say how many named links we skipped
if link_cnti > 0:
 print("Skipped %i named links of a total of %i in input." % (link_skip, link_cnti))

How to Deal with Messages Issued by MuPDF#

Since PyMuPDF v1.16.0, error messages issued by the underlying MuPDF library are being redirected to the Python standard device sys.stderr. So you can handle them like any other output going to this devices.

In addition, these messages go to the internal buffer together with any MuPDF warnings – see below.

We always prefix these messages with an identifying string “mupdf:”.
If you prefer to not see recoverable MuPDF errors at all, issue the command fitz.TOOLS.mupdf_display_errors(False).

MuPDF warnings continue to be stored in an internal buffer and can be viewed using Tools.mupdf_warnings().

Please note that MuPDF errors may or may not lead to Python exceptions. In other words, you may see error messages from which MuPDF can recover and continue processing.

Example output for a recoverable error. We are opening a damaged PDF, but MuPDF is able to repair it and gives us a little information on what happened. Then we illustrate how to find out whether the document can later be saved incrementally. Checking the Document.is_dirty attribute at this point also indicates that during fitz.open the document had to be repaired:

>>> import fitz
>>> doc = fitz.open("damaged-file.pdf") # leads to a sys.stderr message:
mupdf: cannot find startxref
>>> print(fitz.TOOLS.mupdf_warnings()) # check if there is more info:
cannot find startxref
trying to repair broken xref
repairing PDF document
object missing 'endobj' token
>>> doc.can_save_incrementally() # this is to be expected:
False
>>> # the following indicates whether there are updates so far
>>> # this is the case because of the repair actions:
>>> doc.is_dirty
True
>>> # the document has nevertheless been created:
>>> doc
fitz.Document('damaged-file.pdf')
>>> # we now know that any save must occur to a new file

Example output for an unrecoverable error:

>>> import fitz
>>> doc = fitz.open("does-not-exist.pdf")
mupdf: cannot open does-not-exist.pdf: No such file or directory
Traceback (most recent call last):
 File "<pyshell#1>", line 1, in <module>
 doc = fitz.open("does-not-exist.pdf")
 File "C:\Users\Jorj\AppData\Local\Programs\Python\Python37\lib\site-packages\fitz\fitz.py", line 2200, in __init__
 _fitz.Document_swiginit(self, _fitz.new_Document(filename, stream, filetype, rect, width, height, fontsize))
RuntimeError: cannot open does-not-exist.pdf: No such file or directory
>>>

Changing Annotations: Unexpected Behaviour#

Problem#

There are two scenarios:

	Updating an annotation with PyMuPDF which was created by some other software.

	Creating an annotation with PyMuPDF and later changing it with some other software.

In both cases you may experience unintended changes, like a different annotation icon or text font, the fill color or line dashing have disappeared, line end symbols have changed their size or even have disappeared too, etc.

Cause#

Annotation maintenance is handled differently by each PDF maintenance application. Some annotation types may not be supported, or not be supported fully or some details may be handled in a different way than in another application. There is no standard.

Almost always a PDF application also comes with its own icons (file attachments, sticky notes and stamps) and its own set of supported text fonts. For example:

	(Py-) MuPDF only supports these 5 basic fonts for ‘FreeText’ annotations: Helvetica, Times-Roman, Courier, ZapfDingbats and Symbol – no italics / no bold variations. When changing a ‘FreeText’ annotation created by some other app, its font will probably not be recognized nor accepted and be replaced by Helvetica.

	PyMuPDF supports all PDF text markers (highlight, underline, strikeout, squiggly), but these types cannot be updated with Adobe Acrobat Reader.

In most cases there also exists limited support for line dashing which causes existing dashes to be replaced by straight lines. For example:

	PyMuPDF fully supports all line dashing forms, while other viewers only accept a limited subset.

Solutions#

Unfortunately there is not much you can do in most of these cases.

	Stay with the same software for creating and changing an annotation.

	When using PyMuPDF to change an “alien” annotation, try to avoid Annot.update(). The following methods can be used without it, so that the original appearance should be maintained:

	Annot.set_rect() (location changes)

	Annot.set_flags() (annotation behaviour)

	Annot.set_info() (meta information, except changes to content)

	Annot.set_popup() (create popup or change its rect)

	Annot.set_optional_content() (add / remove reference to optional content information)

	Annot.set_open()

	Annot.update_file() (file attachment changes)

Misplaced Item Insertions on PDF Pages#

Problem#

You inserted an item (like an image, an annotation or some text) on an existing PDF page, but later you find it being placed at a different location than intended. For example an image should be inserted at the top, but it unexpectedly appears near the bottom of the page.

Cause#

The creator of the PDF has established a non-standard page geometry without keeping it “local” (as they should!). Most commonly, the PDF standard point (0,0) at bottom-left has been changed to the top-left point. So top and bottom are reversed – causing your insertion to be misplaced.

The visible image of a PDF page is controlled by commands coded in a special mini-language. For an overview of this language consult “Operator Summary” on pp. 643 of the Adobe PDF References. These commands are stored in contents objects as strings (bytes in PyMuPDF).

There are commands in that language, which change the coordinate system of the page for all the following commands. In order to limit the scope of such commands to “local”, they must be wrapped by the command pair q (“save graphics state”, or “stack”) and Q (“restore graphics state”, or “unstack”).

So the PDF creator did this:

stream
1 0 0 -1 0 792 cm % <=== change of coordinate system:
... % letter page, top / bottom reversed
... % remains active beyond these lines
endstream

where they should have done this:

stream
q % put the following in a stack
1 0 0 -1 0 792 cm % <=== scope of this is limited by Q command
... % here, a different geometry exists
Q % after this line, geometry of outer scope prevails
endstream

Note

	In the mini-language’s syntax, spaces and line breaks are equally accepted token delimiters.

	Multiple consecutive delimiters are treated as one.

	Keywords “stream” and “endstream” are inserted automatically – not by the programmer.

Solutions#

Since v1.16.0, there is the property Page.is_wrapped, which lets you check whether a page’s contents are wrapped in that string pair.

If it is False or if you want to be on the safe side, pick one of the following:

	The easiest way: in your script, do a Page.clean_contents() before you do your first item insertion.

	Pre-process your PDF with the MuPDF command line utility mutool clean -c … and work with its output file instead.

	Directly wrap the page’s contents with the stacking commands before you do your first item insertion.

Solutions 1. and 2. use the same technical basis and do a lot more than what is required in this context: they also clean up other inconsistencies or redundancies that may exist, multiple /Contents objects will be concatenated into one, and much more.

Note

For incremental saves, solution 1. has an unpleasant implication: it will bloat the update delta, because it changes so many things and, in addition, stores the cleaned contents uncompressed. So, if you use Page.clean_contents() you should consider saving to a new file with (at least) garbage=3 and deflate=True.

Solution 3. is completely under your control and only does the minimum corrective action. There is a handy utility method Page.wrap_contents() which – as twe name suggests – wraps the page’s contents object(s) by the PDF commands q and Q.

This solution is extremely fast and the changes to the PDF are minimal. This is useful in situations where incrementally saving the file is desirable – or even a must when the PDF has been digitally signed and you cannot change this status.

We recommend the following snippet to get the situation under control:

>>> if not page.is_wrapped:
 page.wrap_contents()
>>> # start inserting text, images and other objects here

Missing or Unreadable Extracted Text#

Fairly often, text extraction does not work text as you would expect: text may be missing, or may not appear in the reading sequence visible on your screen, or contain garbled characters (like a ? or a “TOFU” symbol), etc. This can be caused by a number of different problems.

Problem: no text is extracted#

Your PDF viewer does display text, but you cannot select it with your cursor, and text extraction delivers nothing.

Cause#

	You may be looking at an image embedded in the PDF page (e.g. a scanned PDF).

	The PDF creator used no font, but simulated text by painting it, using little lines and curves. E.g. a capital “D” could be painted by a line “|” and a left-open semi-circle, an “o” by an ellipse, and so on.

Solution#

Use an OCR software like OCRmyPDF to insert a hidden text layer underneath the visible page. The resulting PDF should behave as expected.

Problem: unreadable text#

Text extraction does not deliver the text in readable order, duplicates some text, or is otherwise garbled.

Cause#

	The single characters are readable as such (no “<?>” symbols), but the sequence in which the text is coded in the file deviates from the reading order. The motivation behind may be technical or protection of data against unwanted copies.

	Many “<?>” symbols occur, indicating MuPDF could not interpret these characters. The font may indeed be unsupported by MuPDF, or the PDF creator may haved used a font that displays readable text, but on purpose obfuscates the originating corresponding unicode character.

Solution#

	Use layout preserving text extraction: python -m fitz gettext file.pdf.

	If other text extraction tools also don’t work, then the only solution again is OCRing the page.

Do you have any feedback on this page?

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer to licensing information at artifex.com or contact Artifex Software Inc., 39 Mesa Street, Suite 108A, San Francisco CA 94129, United States for further information.

This documentation covers all versions up to 1.23.25.

 Next

 Module fitz

 Previous

 Low-Level Interfaces

 Copyright © 2015-2024, Artifex

 Made with
 Furo

 Last updated on 21. Feb 2024

 On this page

 	Common Issues and their Solutions	How To Dynamically Clean Up Corrupt PDFs
	How to Convert Any Document to PDF
	How to Deal with Messages Issued by MuPDF
	Changing Annotations: Unexpected Behaviour	Problem
	Cause
	Solutions

	Misplaced Item Insertions on PDF Pages	Problem
	Cause
	Solutions

	Missing or Unreadable Extracted Text	Problem: no text is extracted
	Cause
	Solution
	Problem: unreadable text
	Cause
	Solution

