

 Hide navigation sidebar

 Hide table of contents sidebar

 Toggle site navigation sidebar

 PyMuPDF 1.23.25 documentation

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 PyMuPDF 1.23.25 documentation

 About

	Features Comparison
	Performance
	License and Copyright

User Guide

	Installation
	The Basics
	Tutorial

How to Guide

	Opening Files
	Text
	Images
	Annotations
	Drawing and Graphics
	Stories
	Journalling
	Multiprocessing
	Optional Content Support
	Low-Level Interfaces
	Common Issues and their Solutions

API Reference

	Module fitz
	ClassesToggle child pages in navigation
	Annot
	Archive
	Colorspace
	DisplayList
	Document
	DocumentWriter
	Font
	Identity
	IRect
	Link
	linkDest
	Matrix
	Outline
	Page
	Pixmap
	Point
	Quad
	Rect
	Shape
	Story
	TextPage
	TextWriter
	Tools
	Widget
	Xml

	Operator Algebra for Geometry Objects
	Low Level Functions and ClassesToggle child pages in navigation
	Functions
	Device
	Working together: DisplayList and TextPage

	Glossary
	Constants and Enumerations
	Color Database

Other

	Appendix 1: Details on Text Extraction
	Appendix 2: Considerations on Embedded Files
	Appendix 3: Assorted Technical Information
	Appendix 4: Performance Comparison Methodology
	Change Log
	Deprecated Names

 v: latest

 	Versions
	latest

 	Downloads
	pdf

 	On Read the Docs
	
 Project Home

	
 Builds

 Back to top

 Edit this page

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 English日本語

 Find #pymupdf on Discord

 Do you have any feedback on this page?

TextWriter#

	New in v1.16.18

This class represents a MuPDF text object. The basic idea is to decouple (1) text preparation, and (2) text output to PDF pages.

During preparation, a text writer stores any number of text pieces (“spans”) together with their positions and individual font information. The output of the writer’s prepared content may happen multiple times to any PDF page with a compatible page size.

A text writer is an elegant alternative to methods Page.insert_text() and friends:

	Improved text positioning: Choose any point where insertion of text should start. Storing text returns the “cursor position” after the last character of the span.

	Free font choice: Each text span has its own font and fontsize. This lets you easily switch when composing a larger text.

	Automatic fallback fonts: If a character is not supported by the chosen font, alternative fonts are automatically searched. This significantly reduces the risk of seeing unprintable symbols in the output (“TOFUs” – looking like a small rectangle). PyMuPDF now also comes with the universal font “Droid Sans Fallback Regular”, which supports all Latin characters (including Cyrillic and Greek), and all CJK characters (Chinese, Japanese, Korean).

	Cyrillic and Greek Support: The PDF Base 14 Fonts have integrated support of Cyrillic and Greek characters without specifying encoding. Your text may be a mixture of Latin, Greek and Cyrillic.

	Transparency support: Parameter opacity is supported. This offers a handy way to create watermark-style text.

	Justified text: Supported for any font – not just simple fonts as in Page.insert_textbox().

	Reusability: A TextWriter object exists independent from PDF pages. It can be written multiple times, either to the same or to other pages, in the same or in different PDFs, choosing different colors or transparency.

Using this object entails three steps:

	When created, a TextWriter requires a fixed page rectangle in relation to which it calculates text positions. A text writer can write to pages of this size only.

	Store text in the TextWriter using methods TextWriter.append(), TextWriter.appendv() and TextWriter.fill_textbox() as often as is desired.

	Output the TextWriter object on some PDF page(s).

Note

	Starting with version 1.17.0, TextWriters do support text rotation via the morph parameter of TextWriter.write_text().

	There also exists Page.write_text() which combines one or more TextWriters and jointly writes them to a given rectangle and with a given rotation angle – much like Page.show_pdf_page().

	Method / Attribute
	Short Description

	append()
	Add text in horizontal write mode

	appendv()
	Add text in vertical write mode

	fill_textbox()
	Fill rectangle (horizontal write mode)

	write_text()
	Output TextWriter to a PDF page

	color
	Text color (can be changed)

	last_point
	Last written character ends here

	opacity
	Text opacity (can be changed)

	rect
	Page rectangle used by this TextWriter

	text_rect
	Area occupied so far

Class API

	
class TextWriter#
		
__init__(self, rect, opacity=1, color=None)#
		Parameters:
		rect (rect-like) – rectangle internally used for text positioning computations.

	opacity (float) – sets the transparency for the text to store here. Values outside the interval [0, 1) will be ignored. A value of e.g. 0.5 means 50% transparency.

	color (float,sequ) – the color of the text. All colors are specified as floats 0 <= color <= 1. A single float represents some gray level, a sequence implies the colorspace via its length.

	
append(pos, text, font=None, fontsize=11, language=None, right_to_left=False, small_caps=0)#
		Changed in v1.18.9

	Changed in v1.18.15

Add some new text in horizontal writing.

	Parameters:
		pos (point_like) – start position of the text, the bottom left point of the first character.

	text (str) – a string of arbitrary length. It will be written starting at position “pos”.

	font – a Font. If omitted, fitz.Font("helv") will be used.

	fontsize (float) – the fontsize, a positive number, default 11.

	language (str) – the language to use, e.g. “en” for English. Meaningful values should be compliant with the ISO 639 standards 1, 2, 3 or 5. Reserved for future use: currently has no effect as far as we know.

	right_to_left (bool) – (New in v1.18.9) whether the text should be written from right to left. Applicable for languages like Arabian or Hebrew. Default is False. If True, any Latin parts within the text will automatically converted. There are no other consequences, i.e. TextWriter.last_point will still be the rightmost character, and there neither is any alignment taking place. Hence you may want to use TextWriter.fill_textbox() instead.

	small_caps (bool) –
(New in v1.18.15) look for the character’s Small Capital version in the font. If present, take that value instead. Otherwise the original character (this font or the fallback font) will be taken. The fallback font will never return small caps. For example, this snippet:

>>> doc = fitz.open()
>>> page = doc.new_page()
>>> text = "PyMuPDF: the Python bindings for MuPDF"
>>> font = fitz.Font("figo") # choose a font with small caps
>>> tw = fitz.TextWriter(page.rect)
>>> tw.append((50,100), text, font=font, small_caps=True)
>>> tw.write_text(page)
>>> doc.ez_save("x.pdf")

will produce this PDF text:

	Returns:
	text_rect and last_point. (Changed in v1.18.0:) Raises an exception for an unsupported font – checked via Font.is_writable.

	
appendv(pos, text, font=None, fontsize=11, language=None, small_caps=0)#
	Changed in v1.18.15

Add some new text in vertical, top-to-bottom writing.

	Parameters:
		pos (point_like) – start position of the text, the bottom left point of the first character.

	text (str) – a string. It will be written starting at position “pos”.

	font – a Font. If omitted, fitz.Font("helv") will be used.

	fontsize (float) – the fontsize, a positive float, default 11.

	language (str) – the language to use, e.g. “en” for English. Meaningful values should be compliant with the ISO 639 standards 1, 2, 3 or 5. Reserved for future use: currently has no effect as far as we know.

	small_caps (bool) – (New in v1.18.15) see append().

	Returns:
	text_rect and last_point. (Changed in v1.18.0:) Raises an exception for an unsupported font – checked via Font.is_writable.

	
fill_textbox(rect, text, *, pos=None, font=None, fontsize=11, align=0, right_to_left=False, warn=None, small_caps=0)#
		Changed in 1.17.3: New parameter pos to specify where to start writing within rectangle.

	Changed in v1.18.9: Return list of lines which do not fit in rectangle. Support writing right-to-left (e.g. Arabian, Hebrew).

	Changed in v1.18.15: Prefer small caps if supported by the font.

Fill a given rectangle with text in horizontal writing mode. This is a convenience method to use as an alternative for append().

	Parameters:
		rect (rect_like) – the area to fill. No part of the text will appear outside of this.

	text (str,sequ) – the text. Can be specified as a (UTF-8) string or a list / tuple of strings. A string will first be converted to a list using splitlines(). Every list item will begin on a new line (forced line breaks).

	pos (point_like) – (new in v1.17.3) start storing at this point. Default is a point near rectangle top-left.

	font – the Font, default fitz.Font("helv").

	fontsize (float) – the fontsize.

	align (int) – text alignment. Use one of TEXT_ALIGN_LEFT, TEXT_ALIGN_CENTER, TEXT_ALIGN_RIGHT or TEXT_ALIGN_JUSTIFY.

	right_to_left (bool) – (New in v1.18.9) whether the text should be written from right to left. Applicable for languages like Arabian or Hebrew. Default is False. If True, any Latin parts are automatically reverted. You must still set the alignment (if you want right alignment), it does not happen automatically – the other alignment options remain available as well.

	warn (bool) –
on text overflow do nothing, warn, or raise an exception. Overflow text will never be written. Changed in v1.18.9:

	Default is None.

	The list of overflow lines will be returned.

	small_caps (bool) – (New in v1.18.15) see append().

	Return type:
	list

	Returns:
	New in v1.18.9 – List of lines that did not fit in the rectangle. Each item is a tuple (text, length) containing a string and its length (on the page).

Note

Use these methods as often as is required – there is no technical limit (except memory constraints of your system). You can also mix append() and text boxes and have multiple of both. Text positioning is exclusively controlled by the insertion point. Therefore there is no need to adhere to any order. (Changed in v1.18.0:) Raise an exception for an unsupported font – checked via Font.is_writable.

	
write_text(page, opacity=None, color=None, morph=None, overlay=True, oc=0, render_mode=0)#
	Write the TextWriter text to a page, which is the only mandatory parameter. The other parameters can be used to temporarily override the values used when the TextWriter was created.

	Parameters:
		page – write to this Page.

	opacity (float) – override the value of the TextWriter for this output.

	color (sequ) – override the value of the TextWriter for this output.

	morph (sequ) – modify the text appearance by applying a matrix to it. If provided, this must be a sequence (fixpoint, matrix) with a point-like fixpoint and a matrix-like matrix. A typical example is rotating the text around fixpoint.

	overlay (bool) – put in foreground (default) or background.

	oc (int) – (new in v1.18.4) the xref of an OCG or OCMD.

	render_mode (int) –
The PDF Tr operator value. Values: 0 (default), 1, 2, 3 (invisible).

	
text_rect#
	The area currently occupied.

	Return type:
	Rect

	
last_point#
	The “cursor position” – a Point – after the last written character (its bottom-right).

	Return type:
	Point

	
opacity#
	The text opacity (modifiable).

	Return type:
	float

	
color#
	The text color (modifiable).

	Return type:
	float,tuple

	
rect#
	The page rectangle for which this TextWriter was created. Must not be modified.

	Return type:
	Rect

Note

To see some demo scripts dealing with TextWriter, have a look at this repository.

	Opacity and color apply to all the text in this object.

	If you need different colors / transparency, you must create a separate TextWriter. Whenever you determine the color should change, simply append the text to the respective TextWriter using the previously returned last_point as position for the new text span.

	Appending items or text boxes can occur in arbitrary order: only the position parameter controls where text appears.

	Font and fontsize can freely vary within the same TextWriter. This can be used to let text with different properties appear on the same displayed line: just specify pos accordingly, and e.g. set it to last_point of the previously added item.

	You can use the pos argument of TextWriter.fill_textbox() to set the position of the first text character. This allows filling the same textbox with contents from different TextWriter objects, thus allowing for multiple colors, opacities, etc.

	MuPDF does not support all fonts with this feature, e.g. no Type3 fonts. Starting with v1.18.0 this can be checked via the font attribute Font.is_writable. This attribute is also checked when using TextWriter methods.

Do you have any feedback on this page?

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer to licensing information at artifex.com or contact Artifex Software Inc., 39 Mesa Street, Suite 108A, San Francisco CA 94129, United States for further information.

This documentation covers all versions up to 1.23.25.

 Next

 Tools

 Previous

 TextPage

 Copyright © 2015-2024, Artifex

 Made with
 Furo

 Last updated on 21. Feb 2024

 On this page

 	TextWriter	TextWriter	TextWriter.__init__()
	TextWriter.append()
	TextWriter.appendv()
	TextWriter.fill_textbox()
	TextWriter.write_text()
	TextWriter.text_rect
	TextWriter.last_point
	TextWriter.opacity
	TextWriter.color
	TextWriter.rect

