

 Hide navigation sidebar

 Hide table of contents sidebar

 Toggle site navigation sidebar

 PyMuPDF 1.23.25 documentation

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 PyMuPDF 1.23.25 documentation

 About

	Features Comparison
	Performance
	License and Copyright

User Guide

	Installation
	The Basics
	Tutorial

How to Guide

	Opening Files
	Text
	Images
	Annotations
	Drawing and Graphics
	Stories
	Journalling
	Multiprocessing
	Optional Content Support
	Low-Level Interfaces
	Common Issues and their Solutions

API Reference

	Module fitz
	ClassesToggle child pages in navigation
	Annot
	Archive
	Colorspace
	DisplayList
	Document
	DocumentWriter
	Font
	Identity
	IRect
	Link
	linkDest
	Matrix
	Outline
	Page
	Pixmap
	Point
	Quad
	Rect
	Shape
	Story
	TextPage
	TextWriter
	Tools
	Widget
	Xml

	Operator Algebra for Geometry Objects
	Low Level Functions and ClassesToggle child pages in navigation
	Functions
	Device
	Working together: DisplayList and TextPage

	Glossary
	Constants and Enumerations
	Color Database

Other

	Appendix 1: Details on Text Extraction
	Appendix 2: Considerations on Embedded Files
	Appendix 3: Assorted Technical Information
	Appendix 4: Performance Comparison Methodology
	Change Log
	Deprecated Names

 v: latest

 	Versions
	latest

 	Downloads
	pdf

 	On Read the Docs
	
 Project Home

	
 Builds

 Back to top

 Edit this page

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 English日本語

 Find #pymupdf on Discord

 Do you have any feedback on this page?

Appendix 1: Details on Text Extraction#

This chapter provides background on the text extraction methods of PyMuPDF.

Information of interest are

	what do they provide?

	what do they imply (processing time / data sizes)?

General structure of a TextPage#

TextPage is one of (Py-) MuPDF’s classes. It is normally created (and destroyed again) behind the curtain, when Page text extraction methods are used, but it is also available directly and can be used as a persistent object. Other than its name suggests, images may optionally also be part of a text page:

<page>
 <text block>
 <line>

 <char>
 <image block>

A text page consists of blocks (= roughly paragraphs).

A block consists of either lines and their characters, or an image.

A line consists of spans.

A span consists of adjacent characters with identical font properties: name, size, flags and color.

Plain Text#

Function TextPage.extractText() (or Page.get_text(“text”)) extracts a page’s plain text in original order as specified by the creator of the document.

An example output:

>>> print(page.get_text("text"))
Some text on first page.

Note

The output may not equal an accustomed “natural” reading order. However, you can request a reordering following the scheme “top-left to bottom-right” by executing page.get_text("text", sort=True).

BLOCKS#

Function TextPage.extractBLOCKS() (or Page.get_text(“blocks”)) extracts a page’s text blocks as a list of items like:

(x0, y0, x1, y1, "lines in block", block_no, block_type)

Where the first 4 items are the float coordinates of the block’s bbox. The lines within each block are concatenated by a new-line character.

This is a high-speed method, which by default also extracts image meta information: Each image appears as a block with one text line, which contains meta information. The image itself is not shown.

As with simple text output above, the sort argument can be used as well to obtain a reading order.

Example output:

>>> print(page.get_text("blocks", sort=False))
[(50.0, 88.17500305175781, 166.1709747314453, 103.28900146484375,
'Some text on first page.', 0, 0)]

WORDS#

Function TextPage.extractWORDS() (or Page.get_text(“words”)) extracts a page’s text words as a list of items like:

(x0, y0, x1, y1, "word", block_no, line_no, word_no)

Where the first 4 items are the float coordinates of the words’s bbox. The last three integers provide some more information on the word’s whereabouts.

This is a high-speed method. As with the previous methods, argument sort=True will reorder the words.

Example output:

>>> for word in page.get_text("words", sort=False):
 print(word)
(50.0, 88.17500305175781, 78.73200225830078, 103.28900146484375,
'Some', 0, 0, 0)
(81.79000091552734, 88.17500305175781, 99.5219955444336, 103.28900146484375,
'text', 0, 0, 1)
(102.57999420166016, 88.17500305175781, 114.8119888305664, 103.28900146484375,
'on', 0, 0, 2)
(117.86998748779297, 88.17500305175781, 135.5909881591797, 103.28900146484375,
'first', 0, 0, 3)
(138.64898681640625, 88.17500305175781, 166.1709747314453, 103.28900146484375,
'page.', 0, 0, 4)

HTML#

TextPage.extractHTML() (or Page.get_text(“html”) output fully reflects the structure of the page’s TextPage – much like DICT / JSON below. This includes images, font information and text positions. If wrapped in HTML header and trailer code, it can readily be displayed by an internet browser. Our above example:

>>> for line in page.get_text("html").splitlines():
 print(line)

<div id="page0" style="position:relative;width:300pt;height:350pt;
background-color:white">
<p style="position:absolute;white-space:pre;margin:0;padding:0;top:88pt;
left:50pt"><span style="font-family:Helvetica,sans-serif;
font-size:11pt">Some text on first page.</p>
</div>

Controlling Quality of HTML Output#

While HTML output has improved a lot in MuPDF v1.12.0, it is not yet bug-free: we have found problems in the areas font support and image positioning.

	HTML text contains references to the fonts used of the original document. If these are not known to the browser (a fat chance!), it will replace them with others; the results will probably look awkward. This issue varies greatly by browser – on my Windows machine, MS Edge worked just fine, whereas Firefox looked horrible.

	For PDFs with a complex structure, images may not be positioned and / or sized correctly. This seems to be the case for rotated pages and pages, where the various possible page bbox variants do not coincide (e.g. MediaBox != CropBox). We do not know yet, how to address this – we filed a bug at MuPDF’s site.

To address the font issue, you can use a simple utility script to scan through the HTML file and replace font references. Here is a little example that replaces all fonts with one of the PDF Base 14 Fonts: serifed fonts will become “Times”, non-serifed “Helvetica” and monospaced will become “Courier”. Their respective variations for “bold”, “italic”, etc. are hopefully done correctly by your browser:

import sys
filename = sys.argv[1]
otext = open(filename).read() # original html text string
pos1 = 0 # search start poition
font_serif = "font-family:Times" # enter ...
font_sans = "font-family:Helvetica" # ... your choices ...
font_mono = "font-family:Courier" # ... here
found_one = False # true if search successful

while True:
 pos0 = otext.find("font-family:", pos1) # start of a font spec
 if pos0 < 0: # none found - we are done
 break
 pos1 = otext.find(";", pos0) # end of font spec
 test = otext[pos0 : pos1] # complete font spec string
 testn = "" # the new font spec string
 if test.endswith(",serif"): # font with serifs?
 testn = font_serif # use Times instead
 elif test.endswith(",sans-serif"): # sans serifs font?
 testn = font_sans # use Helvetica
 elif test.endswith(",monospace"): # monospaced font?
 testn = font_mono # becomes Courier

 if testn != "": # any of the above found?
 otext = otext.replace(test, testn) # change the source
 found_one = True
 pos1 = 0 # start over

if found_one:
 ofile = open(filename + ".html", "w")
 ofile.write(otext)
 ofile.close()
else:
 print("Warning: could not find any font specs!")

DICT (or JSON)#

TextPage.extractDICT() (or Page.get_text(“dict”, sort=False)) output fully reflects the structure of a TextPage and provides image content and position detail (bbox – boundary boxes in pixel units) for every block, line and span. Images are stored as bytes for DICT output and base64 encoded strings for JSON output.

For a visualization of the dictionary structure have a look at Structure of Dictionary Outputs.

Here is how this looks like:

{
 "width": 300.0,
 "height": 350.0,
 "blocks": [{
 "type": 0,
 "bbox": (50.0, 88.17500305175781, 166.1709747314453, 103.28900146484375),
 "lines": ({
 "wmode": 0,
 "dir": (1.0, 0.0),
 "bbox": (50.0, 88.17500305175781, 166.1709747314453, 103.28900146484375),
 "spans": ({
 "size": 11.0,
 "flags": 0,
 "font": "Helvetica",
 "color": 0,
 "origin": (50.0, 100.0),
 "text": "Some text on first page.",
 "bbox": (50.0, 88.17500305175781, 166.1709747314453, 103.28900146484375)
 })
 }]
 }]
}

RAWDICT (or RAWJSON)#

TextPage.extractRAWDICT() (or Page.get_text(“rawdict”, sort=False)) is an information superset of DICT and takes the detail level one step deeper. It looks exactly like the above, except that the “text” items (string) in the spans are replaced by the list “chars”. Each “chars” entry is a character dict. For example, here is what you would see in place of item “text”: “Text in black color.” above:

"chars": [{
 "origin": (50.0, 100.0),
 "bbox": (50.0, 88.17500305175781, 57.336997985839844, 103.28900146484375),
 "c": "S"
}, {
 "origin": (57.33700180053711, 100.0),
 "bbox": (57.33700180053711, 88.17500305175781, 63.4530029296875, 103.28900146484375),
 "c": "o"
}, {
 "origin": (63.4530029296875, 100.0),
 "bbox": (63.4530029296875, 88.17500305175781, 72.61600494384766, 103.28900146484375),
 "c": "m"
}, {
 "origin": (72.61600494384766, 100.0),
 "bbox": (72.61600494384766, 88.17500305175781, 78.73200225830078, 103.28900146484375),
 "c": "e"
}, {
 "origin": (78.73200225830078, 100.0),
 "bbox": (78.73200225830078, 88.17500305175781, 81.79000091552734, 103.28900146484375),
 "c": " "
< ... deleted ... >
}, {
 "origin": (163.11297607421875, 100.0),
 "bbox": (163.11297607421875, 88.17500305175781, 166.1709747314453, 103.28900146484375),
 "c": "."
}],

XML#

The TextPage.extractXML() (or Page.get_text(“xml”)) version extracts text (no images) with the detail level of RAWDICT:

>>> for line in page.get_text("xml").splitlines():
 print(line)

<page id="page0" width="300" height="350">
<block bbox="50 88.175 166.17098 103.289">
<line bbox="50 88.175 166.17098 103.289" wmode="0" dir="1 0">

<char quad="50 88.175 57.336999 88.175 50 103.289 57.336999 103.289" x="50"
y="100" color="#000000" c="S"/>
<char quad="57.337 88.175 63.453004 88.175 57.337 103.289 63.453004 103.289" x="57.337"
y="100" color="#000000" c="o"/>
<char quad="63.453004 88.175 72.616008 88.175 63.453004 103.289 72.616008 103.289" x="63.453004"
y="100" color="#000000" c="m"/>
<char quad="72.616008 88.175 78.732 88.175 72.616008 103.289 78.732 103.289" x="72.616008"
y="100" color="#000000" c="e"/>
<char quad="78.732 88.175 81.79 88.175 78.732 103.289 81.79 103.289" x="78.732"
y="100" color="#000000" c=" "/>

... deleted ...

<char quad="163.11298 88.175 166.17098 88.175 163.11298 103.289 166.17098 103.289" x="163.11298"
y="100" color="#000000" c="."/>

</line>
</block>
</page>

Note

We have successfully tested lxml to interpret this output.

XHTML#

TextPage.extractXHTML() (or Page.get_text(“xhtml”)) is a variation of TEXT but in HTML format, containing the bare text and images (“semantic” output):

<div id="page0">
<p>Some text on first page.</p>
</div>

Text Extraction Flags Defaults#

	New in version 1.16.2: Method Page.get_text() supports a keyword parameter flags (int) to control the amount and the quality of extracted data. The following table shows the defaults settings (flags parameter omitted or None) for each extraction variant. If you specify flags with a value other than None, be aware that you must set all desired options. A description of the respective bit settings can be found in Text Extraction Flags.

	New in v1.19.6: The default combinations in the following table are now available as Python constants: TEXTFLAGS_TEXT, TEXTFLAGS_WORDS, TEXTFLAGS_BLOCKS, TEXTFLAGS_DICT, TEXTFLAGS_RAWDICT, TEXTFLAGS_HTML, TEXTFLAGS_XHTML, TEXTFLAGS_XML, and TEXTFLAGS_SEARCH. You can now easily modify a default flag, e.g.

	include images in a “blocks” output:

flags = TEXTFLAGS_BLOCKS | TEXT_PRESERVE_IMAGES

	exclude images from a “dict” output:

flags = TEXTFLAGS_DICT & ~TEXT_PRESERVE_IMAGES

	set dehyphenation off in text searches:

flags = TEXTFLAGS_SEARCH & ~TEXT_DEHYPHENATE

	Indicator
	text
	html
	xhtml
	xml
	dict
	rawdict
	words
	blocks
	search

	preserve ligatures
	1
	1
	1
	1
	1
	1
	1
	1
	1

	preserve whitespace
	1
	1
	1
	1
	1
	1
	1
	1
	1

	preserve images
	n/a
	1
	1
	n/a
	1
	1
	n/a
	0
	0

	inhibit spaces
	0
	0
	0
	0
	0
	0
	0
	0
	0

	dehyphenate
	0
	0
	0
	0
	0
	0
	0
	0
	1

	clip to mediabox
	1
	1
	1
	1
	1
	1
	1
	1
	1

	search refers to the text search function.

	“json” is handled exactly like “dict” and is hence left out.

	“rawjson” is handled exactly like “rawdict” and is hence left out.

	An “n/a” specification means a value of 0 and setting this bit never has any effect on the output (but an adverse effect on performance).

	If you are not interested in images when using an output variant which includes them by default, then by all means set the respective bit off: You will experience a better performance and much lower space requirements.

To show the effect of TEXT_INHIBIT_SPACES have a look at this example:

>>> print(page.get_text("text"))
H a l l o !
Mo r e t e x t
i s f o l l o w i n g
i n E n g l i s h
. . . l e t ' s s e e
w h a t h a p p e n s .
>>> print(page.get_text("text", flags=fitz.TEXT_INHIBIT_SPACES))
Hallo!
More text
is following
in English
... let's see
what happens.
>>>

Performance#

The text extraction methods differ significantly both: in terms of information they supply, and in terms of resource requirements and runtimes. Generally, more information of course means, that more processing is required and a higher data volume is generated.

Note

Especially images have a very significant impact. Make sure to exclude them (via the flags parameter) whenever you do not need them. To process the below mentioned 2’700 total pages with default flags settings required 160 seconds across all extraction methods. When all images where excluded, less than 50% of that time (77 seconds) were needed.

To begin with, all methods are very fast in relation to other products out there in the market. In terms of processing speed, we are not aware of a faster (free) tool. Even the most detailed method, RAWDICT, processes all 1’310 pages of the Adobe PDF References in less than 5 seconds (simple text needs less than 2 seconds here).

The following table shows average relative speeds (“RSpeed”, baseline 1.00 is TEXT), taken across ca. 1400 text-heavy and 1300 image-heavy pages.

	Method
	RSpeed
	Comments
	no images

	TEXT
	1.00
	no images, plain text, line breaks
	1.00

	BLOCKS
	1.00
	image bboxes (only), block level text with bboxes, line breaks
	1.00

	WORDS
	1.02
	no images, word level text with bboxes
	1.02

	XML
	2.72
	no images, char level text, layout and font details
	2.72

	XHTML
	3.32
	base64 images, span level text, no layout info
	1.00

	HTML
	3.54
	base64 images, span level text, layout and font details
	1.01

	DICT
	3.93
	binary images, span level text, layout and font details
	1.04

	RAWDICT
	4.50
	binary images, char level text, layout and font details
	1.68

As mentioned: when excluding image extraction (last column), the relative speeds are changing drastically: except RAWDICT and XML, the other methods are almost equally fast, and RAWDICT requires 40% less execution time than the now slowest XML.

Look at chapter Appendix 1 for more performance information.

Do you have any feedback on this page?

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer to licensing information at artifex.com or contact Artifex Software Inc., 39 Mesa Street, Suite 108A, San Francisco CA 94129, United States for further information.

This documentation covers all versions up to 1.23.25.

 Next

 Appendix 2: Considerations on Embedded Files

 Previous

 Color Database

 Copyright © 2015-2024, Artifex

 Made with
 Furo

 Last updated on 21. Feb 2024

 On this page

 	Appendix 1: Details on Text Extraction	General structure of a TextPage
	Plain Text
	BLOCKS
	WORDS
	HTML
	Controlling Quality of HTML Output
	DICT (or JSON)
	RAWDICT (or RAWJSON)
	XML
	XHTML
	Text Extraction Flags Defaults
	Performance

