

 Hide navigation sidebar

 Hide table of contents sidebar

 Toggle site navigation sidebar

 PyMuPDF 1.23.25 documentation

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 PyMuPDF 1.23.25 documentation

 About

	Features Comparison
	Performance
	License and Copyright

User Guide

	Installation
	The Basics
	Tutorial

How to Guide

	Opening Files
	Text
	Images
	Annotations
	Drawing and Graphics
	Stories
	Journalling
	Multiprocessing
	Optional Content Support
	Low-Level Interfaces
	Common Issues and their Solutions

API Reference

	Module fitz
	ClassesToggle child pages in navigation
	Annot
	Archive
	Colorspace
	DisplayList
	Document
	DocumentWriter
	Font
	Identity
	IRect
	Link
	linkDest
	Matrix
	Outline
	Page
	Pixmap
	Point
	Quad
	Rect
	Shape
	Story
	TextPage
	TextWriter
	Tools
	Widget
	Xml

	Operator Algebra for Geometry Objects
	Low Level Functions and ClassesToggle child pages in navigation
	Functions
	Device
	Working together: DisplayList and TextPage

	Glossary
	Constants and Enumerations
	Color Database

Other

	Appendix 1: Details on Text Extraction
	Appendix 2: Considerations on Embedded Files
	Appendix 3: Assorted Technical Information
	Appendix 4: Performance Comparison Methodology
	Change Log
	Deprecated Names

 v: latest

 	Versions
	latest

 	Downloads
	pdf

 	On Read the Docs
	
 Project Home

	
 Builds

 Back to top

 Edit this page

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 English日本語

 Find #pymupdf on Discord

 Do you have any feedback on this page?

Low-Level Interfaces#

Numerous methods are available to access and manipulate PDF files on a fairly low level. Admittedly, a clear distinction between “low level” and “normal” functionality is not always possible or subject to personal taste.

It also may happen, that functionality previously deemed low-level is later on assessed as being part of the normal interface. This has happened in v1.14.0 for the class Tools - you now find it as an item in the Classes chapter.

It is a matter of documentation only in which chapter of the documentation you find what you are looking for. Everything is available and always via the same interface.

How to Iterate through the xref Table#

A PDF’s xref table is a list of all objects defined in the file. This table may easily contain many thousands of entries – the manual Adobe PDF References for example has 127,000 objects. Table entry “0” is reserved and must not be touched.
The following script loops through the xref table and prints each object’s definition:

>>> xreflen = doc.xref_length() # length of objects table
>>> for xref in range(1, xreflen): # skip item 0!
 print("")
 print("object %i (stream: %s)" % (xref, doc.xref_is_stream(xref)))
 print(doc.xref_object(xref, compressed=False))

This produces the following output:

object 1 (stream: False)
<<
 /ModDate (D:20170314122233-04'00')
 /PXCViewerInfo (PDF-XChange Viewer;2.5.312.1;Feb 9 2015;12:00:06;D:20170314122233-04'00')
>>

object 2 (stream: False)
<<
 /Type /Catalog
 /Pages 3 0 R
>>

object 3 (stream: False)
<<
 /Kids [4 0 R 5 0 R]
 /Type /Pages
 /Count 2
>>

object 4 (stream: False)
<<
 /Type /Page
 /Annots [6 0 R]
 /Parent 3 0 R
 /Contents 7 0 R
 /MediaBox [0 0 595 842]
 /Resources 8 0 R
>>
...
object 7 (stream: True)
<<
 /Length 494
 /Filter /FlateDecode
>>
...

A PDF object definition is an ordinary ASCII string.

How to Handle Object Streams#

Some object types contain additional data apart from their object definition. Examples are images, fonts, embedded files or commands describing the appearance of a page.

Objects of these types are called “stream objects”. PyMuPDF allows reading an object’s stream via method Document.xref_stream() with the object’s xref as an argument. It is also possible to write back a modified version of a stream using Document.update_stream().

Assume that the following snippet wants to read all streams of a PDF for whatever reason:

>>> xreflen = doc.xref_length() # number of objects in file
>>> for xref in range(1, xreflen): # skip item 0!
 if stream := doc.xref_stream(xref):
 # do something with it (it is a bytes object or None)
 # e.g. just write it back:
 doc.update_stream(xref, stream)

Document.xref_stream() automatically returns a stream decompressed as a bytes object – and Document.update_stream() automatically compresses it if beneficial.

How to Handle Page Contents#

A PDF page can have zero or multiple contents objects. These are stream objects describing what appears where and how on a page (like text and images). They are written in a special mini-language described e.g. in chapter “APPENDIX A - Operator Summary” on page 643 of the Adobe PDF References.

Every PDF reader application must be able to interpret the contents syntax to reproduce the intended appearance of the page.

If multiple contents objects are provided, they must be interpreted in the specified sequence in exactly the same way as if they were provided as a concatenation of the several.

There are good technical arguments for having multiple contents objects:

	It is a lot easier and faster to just add new contents objects than maintaining a single big one (which entails reading, decompressing, modifying, recompressing, and rewriting it for each change).

	When working with incremental updates, a modified big contents object will bloat the update delta and can thus easily negate the efficiency of incremental saves.

For example, PyMuPDF adds new, small contents objects in methods Page.insert_image(), Page.show_pdf_page() and the Shape methods.

However, there are also situations when a single contents object is beneficial: it is easier to interpret and more compressible than multiple smaller ones.

Here are two ways of combining multiple contents of a page:

>>> # method 1: use the MuPDF clean function
>>> page.clean_contents() # cleans and combines multiple Contents
>>> xref = page.get_contents()[0] # only one /Contents now!
>>> cont = doc.xref_stream(xref)
>>> # this has also reformatted the PDF commands

>>> # method 2: extract concatenated contents
>>> cont = page.read_contents()
>>> # the /Contents source itself is unmodified

The clean function Page.clean_contents() does a lot more than just glueing contents objects: it also corrects and optimizes the PDF operator syntax of the page and removes any inconsistencies with the page’s object definition.

How to Access the PDF Catalog#

This is a central (“root”) object of a PDF. It serves as a starting point to reach important other objects and it also contains some global options for the PDF:

>>> import fitz
>>> doc=fitz.open("PyMuPDF.pdf")
>>> cat = doc.pdf_catalog() # get xref of the /Catalog
>>> print(doc.xref_object(cat)) # print object definition
<<
 /Type/Catalog % object type
 /Pages 3593 0 R % points to page tree
 /OpenAction 225 0 R % action to perform on open
 /Names 3832 0 R % points to global names tree
 /PageMode /UseOutlines % initially show the TOC
 /PageLabels<</Nums[0<</S/D>>2<</S/r>>8<</S/D>>]>> % labels given to pages
 /Outlines 3835 0 R % points to outline tree
>>

Note

Indentation, line breaks and comments are inserted here for clarification purposes only and will not normally appear. For more information on the PDF catalog see section 7.7.2 on page 71 of the Adobe PDF References.

How to Access the PDF File Trailer#

The trailer of a PDF file is a dictionary located towards the end of the file. It contains special objects, and pointers to important other information. See Adobe PDF References p. 42. Here is an overview:

	Key
	Type
	Value

	Size
	int
	Number of entries in the cross-reference table + 1.

	Prev
	int
	Offset to previous xref section (indicates incremental updates).

	Root
	dictionary
	(indirect) Pointer to the catalog. See previous section.

	Encrypt
	dictionary
	Pointer to encryption object (encrypted files only).

	Info
	dictionary
	(indirect) Pointer to information (metadata).

	ID
	array
	File identifier consisting of two byte strings.

	XRefStm
	int
	Offset of a cross-reference stream. See Adobe PDF References p. 49.

Access this information via PyMuPDF with Document.pdf_trailer() or, equivalently, via Document.xref_object() using -1 instead of a valid xref number.

>>> import fitz
>>> doc=fitz.open("PyMuPDF.pdf")
>>> print(doc.xref_object(-1)) # or: print(doc.pdf_trailer())
<<
/Type /XRef
/Index [0 8263]
/Size 8263
/W [1 3 1]
/Root 8260 0 R
/Info 8261 0 R
/ID [<4339B9CEE46C2CD28A79EBDDD67CC9B3> <4339B9CEE46C2CD28A79EBDDD67CC9B3>]
/Length 19883
/Filter /FlateDecode
>>
>>>

How to Access XML Metadata#

A PDF may contain XML metadata in addition to the standard metadata format. In fact, most PDF viewer or modification software adds this type of information when saving the PDF (Adobe, Nitro PDF, PDF-XChange, etc.).

PyMuPDF has no way to interpret or change this information directly, because it contains no XML features. XML metadata is however stored as a stream object, so it can be read, modified with appropriate software and written back.

>>> xmlmetadata = doc.get_xml_metadata()
>>> print(xmlmetadata)
<?xpacket begin="\ufeff" id="W5M0MpCehiHzreSzNTczkc9d"?>
<x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="3.1-702">
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
...
omitted data
...
<?xpacket end="w"?>

Using some XML package, the XML data can be interpreted and / or modified and then stored back. The following also works, if the PDF previously had no XML metadata:

>>> # write back modified XML metadata:
>>> doc.set_xml_metadata(xmlmetadata)
>>>
>>> # XML metadata can be deleted like this:
>>> doc.del_xml_metadata()

How to Extend PDF Metadata#

Attribute Document.metadata is designed so it works for all supported document types in the same way: it is a Python dictionary with a fixed set of key-value pairs. Correspondingly, Document.set_metadata() only accepts standard keys.

However, PDFs may contain items not accessible like this. Also, there may be reasons to store additional information, like copyrights. Here is a way to handle arbitrary metadata items by using PyMuPDF low-level functions.

As an example, look at this standard metadata output of some PDF:

standard metadata

pprint(doc.metadata)
{'author': 'PRINCE',
 'creationDate': "D:2010102417034406'-30'",
 'creator': 'PrimoPDF http://www.primopdf.com/',
 'encryption': None,
 'format': 'PDF 1.4',
 'keywords': '',
 'modDate': "D:20200725062431-04'00'",
 'producer': 'macOS Version 10.15.6 (Build 19G71a) Quartz PDFContext, '
 'AppendMode 1.1',
 'subject': '',
 'title': 'Full page fax print',
 'trapped': ''}

Use the following code to see all items stored in the metadata object:

metadata including private items

metadata = {} # make my own metadata dict
what, value = doc.xref_get_key(-1, "Info") # /Info key in the trailer
if what != "xref":
 pass # PDF has no metadata
else:
 xref = int(value.replace("0 R", "")) # extract the metadata xref
 for key in doc.xref_get_keys(xref):
 metadata[key] = doc.xref_get_key(xref, key)[1]
pprint(metadata)
{'Author': 'PRINCE',
 'CreationDate': "D:2010102417034406'-30'",
 'Creator': 'PrimoPDF http://www.primopdf.com/',
 'ModDate': "D:20200725062431-04'00'",
 'PXCViewerInfo': 'PDF-XChange Viewer;2.5.312.1;Feb 9 '
 "2015;12:00:06;D:20200725062431-04'00'",
 'Producer': 'macOS Version 10.15.6 (Build 19G71a) Quartz PDFContext, '
 'AppendMode 1.1',
 'Title': 'Full page fax print'}

note the additional 'PXCViewerInfo' key - ignored in standard!

Vice versa, you can also store private metadata items in a PDF. It is your responsibility to make sure that these items conform to PDF specifications - especially they must be (unicode) strings. Consult section 14.3 (p. 548) of the Adobe PDF References for details and caveats:

what, value = doc.xref_get_key(-1, "Info") # /Info key in the trailer
if what != "xref":
 raise ValueError("PDF has no metadata")
xref = int(value.replace("0 R", "")) # extract the metadata xref
add some private information
doc.xref_set_key(xref, "mykey", fitz.get_pdf_str("北京 is Beijing"))
#
after executing the previous code snippet, we will see this:
pprint(metadata)
{'Author': 'PRINCE',
 'CreationDate': "D:2010102417034406'-30'",
 'Creator': 'PrimoPDF http://www.primopdf.com/',
 'ModDate': "D:20200725062431-04'00'",
 'PXCViewerInfo': 'PDF-XChange Viewer;2.5.312.1;Feb 9 '
 "2015;12:00:06;D:20200725062431-04'00'",
 'Producer': 'macOS Version 10.15.6 (Build 19G71a) Quartz PDFContext, '
 'AppendMode 1.1',
 'Title': 'Full page fax print',
 'mykey': '北京 is Beijing'}

To delete selected keys, use doc.xref_set_key(xref, "mykey", "null"). As explained in the next section, string “null” is the PDF equivalent to Python’s None. A key with that value will be treated as not being specified – and physically removed in garbage collections.

How to Read and Update PDF Objects#

There also exist granular, elegant ways to access and manipulate selected PDF dictionary keys.

	Document.xref_get_keys() returns the PDF keys of the object at xref:

In [1]: import fitz
In [2]: doc = fitz.open("pymupdf.pdf")
In [3]: page = doc[0]
In [4]: from pprint import pprint
In [5]: pprint(doc.xref_get_keys(page.xref))
('Type', 'Contents', 'Resources', 'MediaBox', 'Parent')

	Compare with the full object definition:

In [6]: print(doc.xref_object(page.xref))
<<
 /Type /Page
 /Contents 1297 0 R
 /Resources 1296 0 R
 /MediaBox [0 0 612 792]
 /Parent 1301 0 R
>>

	Single keys can also be accessed directly via Document.xref_get_key(). The value always is a string together with type information, that helps with interpreting it:

In [7]: doc.xref_get_key(page.xref, "MediaBox")
Out[7]: ('array', '[0 0 612 792]')

	Here is a full listing of the above page keys:

In [9]: for key in doc.xref_get_keys(page.xref):
...: print("%s = %s" % (key, doc.xref_get_key(page.xref, key)))
...:
Type = ('name', '/Page')
Contents = ('xref', '1297 0 R')
Resources = ('xref', '1296 0 R')
MediaBox = ('array', '[0 0 612 792]')
Parent = ('xref', '1301 0 R')

	An undefined key inquiry returns ('null', 'null') – PDF object type null corresponds to None in Python. Similar for the booleans true and false.

	Let us add a new key to the page definition that sets its rotation to 90 degrees (you are aware that there actually exists Page.set_rotation() for this?):

In [11]: doc.xref_get_key(page.xref, "Rotate") # no rotation set:
Out[11]: ('null', 'null')
In [12]: doc.xref_set_key(page.xref, "Rotate", "90") # insert a new key
In [13]: print(doc.xref_object(page.xref)) # confirm success
<<
 /Type /Page
 /Contents 1297 0 R
 /Resources 1296 0 R
 /MediaBox [0 0 612 792]
 /Parent 1301 0 R
 /Rotate 90
>>

	This method can also be used to remove a key from the xref dictionary by setting its value to null: The following will remove the rotation specification from the page: doc.xref_set_key(page.xref, "Rotate", "null"). Similarly, to remove all links, annotations and fields from a page, use doc.xref_set_key(page.xref, "Annots", "null"). Because Annots by definition is an array, setting en empty array with the statement doc.xref_set_key(page.xref, "Annots", "[]") would do the same job in this case.

	PDF dictionaries can be hierarchically nested. In the following page object definition both, Font and XObject are subdictionaries of Resources:

In [15]: print(doc.xref_object(page.xref))
<<
 /Type /Page
 /Contents 1297 0 R
 /Resources <<
 /XObject <<
 /Im1 1291 0 R
 >>
 /Font <<
 /F39 1299 0 R
 /F40 1300 0 R
 >>
 >>
 /MediaBox [0 0 612 792]
 /Parent 1301 0 R
 /Rotate 90
>>

	The above situation is supported by methods Document.xref_set_key() and Document.xref_get_key(): use a path-like notation to point at the required key. For example, to retrieve the value of key Im1 above, specify the complete chain of dictionaries “above” it in the key argument: "Resources/XObject/Im1":

In [16]: doc.xref_get_key(page.xref, "Resources/XObject/Im1")
Out[16]: ('xref', '1291 0 R')

	The path notation can also be used to directly set a value: use the following to let Im1 point to a different object:

In [17]: doc.xref_set_key(page.xref, "Resources/XObject/Im1", "9999 0 R")
In [18]: print(doc.xref_object(page.xref)) # confirm success:
<<
 /Type /Page
 /Contents 1297 0 R
 /Resources <<
 /XObject <<
 /Im1 9999 0 R
 >>
 /Font <<
 /F39 1299 0 R
 /F40 1300 0 R
 >>
 >>
 /MediaBox [0 0 612 792]
 /Parent 1301 0 R
 /Rotate 90
>>

Be aware, that no semantic checks whatsoever will take place here: if the PDF has no xref 9999, it won’t be detected at this point.

	If a key does not exist, it will be created by setting its value. Moreover, if any intermediate keys do not exist either, they will also be created as necessary. The following creates an array D several levels below the existing dictionary A. Intermediate dictionaries B and C are automatically created:

In [5]: print(doc.xref_object(xref)) # some existing PDF object:
<<
 /A <<
 >>
>>
In [6]: # the following will create 'B', 'C' and 'D'
In [7]: doc.xref_set_key(xref, "A/B/C/D", "[1 2 3 4]")
In [8]: print(doc.xref_object(xref)) # check out what happened:
<<
 /A <<
 /B <<
 /C <<
 /D [1 2 3 4]
 >>
 >>
 >>
>>

	When setting key values, basic PDF syntax checking will be done by MuPDF. For example, new keys can only be created below a dictionary. The following tries to create some new string item E below the previously created array D:

In [9]: # 'D' is an array, no dictionary!
In [10]: doc.xref_set_key(xref, "A/B/C/D/E", "(hello)")
mupdf: not a dict (array)
--- ... ---
RuntimeError: not a dict (array)

	It is also not possible, to create a key if some higher level key is an “indirect” object, i.e. an xref. In other words, xrefs can only be modified directly and not implicitly via other objects referencing them:

In [13]: # the following object points to an xref
In [14]: print(doc.xref_object(4))
<<
 /E 3 0 R
>>
In [15]: # 'E' is an indirect object and cannot be modified here!
In [16]: doc.xref_set_key(4, "E/F", "90")
mupdf: path to 'F' has indirects
--- ... ---
RuntimeError: path to 'F' has indirects

Caution

These are expert functions! There are no validations as to whether valid PDF objects, xrefs, etc. are specified. As with other low-level methods there is the risk to render the PDF, or parts of it unusable.

Do you have any feedback on this page?

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer to licensing information at artifex.com or contact Artifex Software Inc., 39 Mesa Street, Suite 108A, San Francisco CA 94129, United States for further information.

This documentation covers all versions up to 1.23.25.

 Next

 Common Issues and their Solutions

 Previous

 Optional Content Support

 Copyright © 2015-2024, Artifex

 Made with
 Furo

 Last updated on 21. Feb 2024

 On this page

 	Low-Level Interfaces	How to Iterate through the xref Table
	How to Handle Object Streams
	How to Handle Page Contents
	How to Access the PDF Catalog
	How to Access the PDF File Trailer
	How to Access XML Metadata
	How to Extend PDF Metadata
	How to Read and Update PDF Objects

