

 Hide navigation sidebar

 Hide table of contents sidebar

 Toggle site navigation sidebar

 PyMuPDF 1.23.26 documentation

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 PyMuPDF 1.23.26 documentation

 About

	Features Comparison
	Performance
	License and Copyright

User Guide

	Installation
	The Basics
	Tutorial
	Resources

How to Guide

	Opening Files
	Text
	Images
	Annotations
	Drawing and Graphics
	Stories
	Journalling
	Multiprocessing
	Optional Content Support
	Low-Level Interfaces
	Common Issues and their Solutions

API Reference

	Module fitz
	ClassesToggle child pages in navigation
	Annot
	Archive
	Colorspace
	DisplayList
	Document
	DocumentWriter
	Font
	Identity
	IRect
	Link
	linkDest
	Matrix
	Outline
	Page
	Pixmap
	Point
	Quad
	Rect
	Shape
	Story
	TextPage
	TextWriter
	Tools
	Widget
	Xml

	Operator Algebra for Geometry Objects
	Low Level Functions and ClassesToggle child pages in navigation
	Functions
	Device
	Working together: DisplayList and TextPage

	Glossary
	Constants and Enumerations
	Color Database

Other

	Appendix 1: Details on Text Extraction
	Appendix 2: Considerations on Embedded Files
	Appendix 3: Assorted Technical Information
	Appendix 4: Performance Comparison Methodology
	Change Log
	Deprecated Names

 v: latest

 	Versions
	latest

 	Downloads
	pdf

 	On Read the Docs
	
 Project Home

	
 Builds

 Back to top

 Edit this page

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 English日本語

 Find #pymupdf on Discord

 Do you have any feedback on this page?

The Basics#

Opening a File#

To open a file, do the following:

 import fitz

 doc = fitz.open("a.pdf") # open a document

Note

Taking it further

See the list of supported file types and The How to Guide on Opening Files for more advanced options.

Extract text from a PDF#

To extract all the text from a PDF file, do the following:

 import fitz

 doc = fitz.open("a.pdf") # open a document
 out = open("output.txt", "wb") # create a text output
 for page in doc: # iterate the document pages
 text = page.get_text().encode("utf8") # get plain text (is in UTF-8)
 out.write(text) # write text of page
 out.write(bytes((12,))) # write page delimiter (form feed 0x0C)
 out.close()

Note

Taking it further

There are many more examples which explain how to extract text from specific areas or how to extract tables from documents. Please refer to the How to Guide for Text.

API reference

	Page.get_text()

Extract images from a PDF#

To extract all the images from a PDF file, do the following:

 import fitz

 doc = fitz.open("test.pdf") # open a document

 for page_index in range(len(doc)): # iterate over pdf pages
 page = doc[page_index] # get the page
 image_list = page.get_images()

 # print the number of images found on the page
 if image_list:
 print(f"Found {len(image_list)} images on page {page_index}")
 else:
 print("No images found on page", page_index)

 for image_index, img in enumerate(image_list, start=1): # enumerate the image list
 xref = img[0] # get the XREF of the image
 pix = fitz.Pixmap(doc, xref) # create a Pixmap

 if pix.n - pix.alpha > 3: # CMYK: convert to RGB first
 pix = fitz.Pixmap(fitz.csRGB, pix)

 pix.save("page_%s-image_%s.png" % (page_index, image_index)) # save the image as png
 pix = None

Note

Taking it further

There are many more examples which explain how to extract text from specific areas or how to extract tables from documents. Please refer to the How to Guide for Text.

API reference

	Page.get_images()

	Pixmap

Merging PDF files#

To merge PDF files, do the following:

 import fitz

 doc_a = fitz.open("a.pdf") # open the 1st document
 doc_b = fitz.open("b.pdf") # open the 2nd document

 doc_a.insert_pdf(doc_b) # merge the docs
 doc_a.save("a+b.pdf") # save the merged document with a new filename

Merging PDF files with other types of file#

With Document.insert_file() you can invoke the method to merge supported files with PDF. For example:

 import fitz

 doc_a = fitz.open("a.pdf") # open the 1st document
 doc_b = fitz.open("b.svg") # open the 2nd document

 doc_a.insert_file(doc_b) # merge the docs
 doc_a.save("a+b.pdf") # save the merged document with a new filename

Note

Taking it further

It is easy to join PDFs with Document.insert_pdf() & Document.insert_file(). Given open PDF documents, you can copy page ranges from one to the other. You can select the point where the copied pages should be placed, you can revert the page sequence and also change page rotation. This Wiki article contains a full description.

The GUI script join.py uses this method to join a list of files while also joining the respective table of contents segments. It looks like this:

API reference

	Document.insert_pdf()

	Document.insert_file()

Working with Coordinates#

There is one mathematical term that you should feel comfortable with when using PyMuPDF - “coordinates”. Please have a quick look at the Coordinates section to understand the coordinate system to help you with positioning objects and understand your document space.

Adding a watermark to a PDF#

To add a watermark to a PDF file, do the following:

 import fitz

 doc = fitz.open("document.pdf") # open a document

 for page_index in range(len(doc)): # iterate over pdf pages
 page = doc[page_index] # get the page

 # insert an image watermark from a file name to fit the page bounds
 page.insert_image(page.bound(),filename="watermark.png", overlay=False)

 doc.save("watermarked-document.pdf") # save the document with a new filename

Note

Taking it further

Adding watermarks is essentially as simple as adding an image at the base of each PDF page. You should ensure that the image has the required opacity and aspect ratio to make it look the way you need it to.

In the example above a new image is created from each file reference, but to be more performant (by saving memory and file size) this image data should be referenced only once - see the code example and explanation on Page.insert_image() for the implementation.

API reference

	Page.bound()

	Page.insert_image()

Adding an image to a PDF#

To add an image to a PDF file, for example a logo, do the following:

 import fitz

 doc = fitz.open("document.pdf") # open a document

 for page_index in range(len(doc)): # iterate over pdf pages
 page = doc[page_index] # get the page

 # insert an image logo from a file name at the top left of the document
 page.insert_image(fitz.Rect(0,0,50,50),filename="my-logo.png")

 doc.save("logo-document.pdf") # save the document with a new filename

Note

Taking it further

As with the watermark example you should ensure to be more performant by only referencing the image once if possible - see the code example and explanation on Page.insert_image().

API reference

	Rect

	Page.insert_image()

Rotating a PDF#

To add a rotation to a page, do the following:

 import fitz

 doc = fitz.open("test.pdf") # open document
 page = doc[0] # get the 1st page of the document
 page.set_rotation(90) # rotate the page
 doc.save("rotated-page-1.pdf")

Note

API reference

	Page.set_rotation()

Cropping a PDF#

To crop a page to a defined Rect, do the following:

 import fitz

 doc = fitz.open("test.pdf") # open document
 page = doc[0] # get the 1st page of the document
 page.set_cropbox(fitz.Rect(100, 100, 400, 400)) # set a cropbox for the page
 doc.save("cropped-page-1.pdf")

Note

API reference

	Page.set_cropbox()

Attaching Files#

To attach another file to a page, do the following:

 import fitz

 doc = fitz.open("test.pdf") # open main document
 attachment = fitz.open("my-attachment.pdf") # open document you want to attach

 page = doc[0] # get the 1st page of the document
 point = fitz.Point(100, 100) # create the point where you want to add the attachment
 attachment_data = attachment.tobytes() # get the document byte data as a buffer

 # add the file annotation with the point, data and the file name
 file_annotation = page.add_file_annot(point, attachment_data, "attachment.pdf")

 doc.save("document-with-attachment.pdf") # save the document

Note

Taking it further

When adding the file with Page.add_file_annot() note that the third parameter for the filename should include the actual file extension. Without this the attachment possibly will not be able to be recognized as being something which can be opened. For example, if the filename is just “attachment” when view the resulting PDF and attempting to open the attachment you may well get an error. However, with “attachment.pdf” this can be recognized and opened by PDF viewers as a valid file type.

The default icon for the attachment is by default a “push pin”, however you can change this by setting the icon parameter.

API reference

	Point

	Document.tobytes()

	Page.add_file_annot()

Embedding Files#

To embed a file to a document, do the following:

 import fitz

 doc = fitz.open("test.pdf") # open main document
 embedded_doc = fitz.open("my-embed.pdf") # open document you want to embed

 embedded_data = embedded_doc.tobytes() # get the document byte data as a buffer

 # embed with the file name and the data
 doc.embfile_add("my-embedded_file.pdf", embedded_data)

 doc.save("document-with-embed.pdf") # save the document

Note

Taking it further

As with attaching files, when adding the file with Document.embfile_add() note that the first parameter for the filename should include the actual file extension.

API reference

	Document.tobytes()

	Document.embfile_add()

Deleting Pages#

To delete a page from a document, do the following:

 import fitz

 doc = fitz.open("test.pdf") # open a document
 doc.delete_page(0) # delete the 1st page of the document
 doc.save("test-deleted-page-one.pdf") # save the document

To delete a multiple pages from a document, do the following:

 import fitz

 doc = fitz.open("test.pdf") # open a document
 doc.delete_pages(from_page=9, to_page=14) # delete a page range from the document
 doc.save("test-deleted-pages.pdf") # save the document

Note

Taking it further

The page index is zero-based, so to delete page 10 of a document you would do the following doc.delete_page(9).

Similarly, doc.delete_pages(from_page=9, to_page=14) will delete pages 10 - 15 inclusive.

API reference

	Document.delete_page()

	Document.delete_pages()

Re-Arranging Pages#

To re-arrange pages, do the following:

 import fitz

 doc = fitz.open("test.pdf") # open a document
 doc.move_page(1,0) # move the 2nd page of the document to the start of the document
 doc.save("test-page-moved.pdf") # save the document

Note

API reference

	Document.move_page()

Copying Pages#

To copy pages, do the following:

 import fitz

 doc = fitz.open("test.pdf") # open a document
 doc.copy_page(0) # copy the 1st page and puts it at the end of the document
 doc.save("test-page-copied.pdf") # save the document

Note

API reference

	Document.copy_page()

Selecting Pages#

To select pages, do the following:

 import fitz

 doc = fitz.open("test.pdf") # open a document
 doc.select([0, 1]) # select the 1st & 2nd page of the document
 doc.save("just-page-one-and-two.pdf") # save the document

Note

Taking it further

With PyMuPDF you have all options to copy, move, delete or re-arrange the pages of a PDF. Intuitive methods exist that allow you to do this on a page-by-page level, like the Document.copy_page() method.

Or you alternatively prepare a complete new page layout in form of a Python sequence, that contains the page numbers you want, in the sequence you want, and as many times as you want each page. The following may illustrate what can be done with Document.select()

 doc.select([1, 1, 1, 5, 4, 9, 9, 9, 0, 2, 2, 2])

Now let’s prepare a PDF for double-sided printing (on a printer not directly supporting this):

The number of pages is given by len(doc) (equal to doc.page_count). The following lists represent the even and the odd page numbers, respectively:

 p_even = [p in range(doc.page_count) if p % 2 == 0]
 p_odd = [p in range(doc.page_count) if p % 2 == 1]

This snippet creates the respective sub documents which can then be used to print the document:

 doc.select(p_even) # only the even pages left over
 doc.save("even.pdf") # save the "even" PDF
 doc.close() # recycle the file
 doc = fitz.open(doc.name) # re-open
 doc.select(p_odd) # and do the same with the odd pages
 doc.save("odd.pdf")

For more information also have a look at this Wiki article.

The following example will reverse the order of all pages (extremely fast: sub-second time for the 756 pages of the Adobe PDF References):

 lastPage = doc.page_count - 1
 for i in range(lastPage):
 doc.move_page(lastPage, i) # move current last page to the front

This snippet duplicates the PDF with itself so that it will contain the pages 0, 1, …, n, 0, 1, …, n (extremely fast and without noticeably increasing the file size!):

 page_count = len(doc)
 for i in range(page_count):
 doc.copy_page(i) # copy this page to after last page

API reference

	Document.select()

Adding Blank Pages#

To add a blank page, do the following:

 import fitz

 doc = fitz.open(...) # some new or existing PDF document
 page = doc.new_page(-1, # insertion point: end of document
 width = 595, # page dimension: A4 portrait
 height = 842)
 doc.save("doc-with-new-blank-page.pdf") # save the document

Note

Taking it further

Use this to create the page with another pre-defined paper format:

The convenience function paper_size() knows over 40 industry standard paper formats to choose from. To see them, inspect dictionary paperSizes. Pass the desired dictionary key to paper_size() to retrieve the paper dimensions. Upper and lower case is supported. If you append “-L” to the format name, the landscape version is returned.

Here is a 3-liner that creates a PDF: with one empty page. Its file size is 460 bytes:

API reference

	Document.new_page()

	paperSizes

Inserting Pages with Text Content#

Using the Document.insert_page() method also inserts a new page and accepts the same width and height parameters. But it lets you also insert arbitrary text into the new page and returns the number of inserted lines.

 import fitz

 doc = fitz.open(...) # some new or existing PDF document
 n = doc.insert_page(-1, # default insertion point
 text = "The quick brown fox jumped over the lazy dog",
 fontsize = 11,
 width = 595,
 height = 842,
 fontname = "Helvetica", # default font
 fontfile = None, # any font file name
 color = (0, 0, 0)) # text color (RGB)

Note

Taking it further

The text parameter can be a (sequence of) string (assuming UTF-8 encoding). Insertion will start at Point (50, 72), which is one inch below top of page and 50 points from the left. The number of inserted text lines is returned.

API reference

	Document.insert_page()

Splitting Single Pages#

This deals with splitting up pages of a PDF in arbitrary pieces. For example, you may have a PDF with Letter format pages which you want to print with a magnification factor of four: each page is split up in 4 pieces which each going to a separate PDF page in Letter format again.

 import fitz

 src = fitz.open("test.pdf")
 doc = fitz.open() # empty output PDF

 for spage in src: # for each page in input
 r = spage.rect # input page rectangle
 d = fitz.Rect(spage.cropbox_position, # CropBox displacement if not
 spage.cropbox_position) # starting at (0, 0)
 #--
 # example: cut input page into 2 x 2 parts
 #--
 r1 = r / 2 # top left rect
 r2 = r1 + (r1.width, 0, r1.width, 0) # top right rect
 r3 = r1 + (0, r1.height, 0, r1.height) # bottom left rect
 r4 = fitz.Rect(r1.br, r.br) # bottom right rect
 rect_list = [r1, r2, r3, r4] # put them in a list

 for rx in rect_list: # run thru rect list
 rx += d # add the CropBox displacement
 page = doc.new_page(-1, # new output page with rx dimensions
 width = rx.width,
 height = rx.height)
 page.show_pdf_page(
 page.rect, # fill all new page with the image
 src, # input document
 spage.number, # input page number
 clip = rx, # which part to use of input page
)

 # that's it, save output file
 doc.save("poster-" + src.name,
 garbage=3, # eliminate duplicate objects
 deflate=True, # compress stuff where possible
)

Example:

Note

API reference

	Page.cropbox_position()

	Page.show_pdf_page()

Combining Single Pages#

This deals with joining PDF pages to form a new PDF with pages each combining two or four original ones (also called “2-up”, “4-up”, etc.). This could be used to create booklets or thumbnail-like overviews.

 import fitz

 src = fitz.open("test.pdf")
 doc = fitz.open() # empty output PDF

 width, height = fitz.paper_size("a4") # A4 portrait output page format
 r = fitz.Rect(0, 0, width, height)

 # define the 4 rectangles per page
 r1 = r / 2 # top left rect
 r2 = r1 + (r1.width, 0, r1.width, 0) # top right
 r3 = r1 + (0, r1.height, 0, r1.height) # bottom left
 r4 = fitz.Rect(r1.br, r.br) # bottom right

 # put them in a list
 r_tab = [r1, r2, r3, r4]

 # now copy input pages to output
 for spage in src:
 if spage.number % 4 == 0: # create new output page
 page = doc.new_page(-1,
 width = width,
 height = height)
 # insert input page into the correct rectangle
 page.show_pdf_page(r_tab[spage.number % 4], # select output rect
 src, # input document
 spage.number) # input page number

 # by all means, save new file using garbage collection and compression
 doc.save("4up.pdf", garbage=3, deflate=True)

Example:

Note

API reference

	Page.cropbox_position()

	Page.show_pdf_page()

PDF Encryption & Decryption#

Starting with version 1.16.0, PDF decryption and encryption (using passwords) are fully supported. You can do the following:

	Check whether a document is password protected / (still) encrypted (Document.needs_pass, Document.is_encrypted).

	Gain access authorization to a document (Document.authenticate()).

	Set encryption details for PDF files using Document.save() or Document.write() and

	decrypt or encrypt the content

	set password(s)

	set the encryption method

	set permission details

Note

A PDF document may have two different passwords:

	The owner password provides full access rights, including changing passwords, encryption method, or permission detail.

	The user password provides access to document content according to the established permission details. If present, opening the PDF in a viewer will require providing it.

Method Document.authenticate() will automatically establish access rights according to the password used.

The following snippet creates a new PDF and encrypts it with separate user and owner passwords. Permissions are granted to print, copy and annotate, but no changes are allowed to someone authenticating with the user password.

 import fitz

 text = "some secret information" # keep this data secret
 perm = int(
 fitz.PDF_PERM_ACCESSIBILITY # always use this
 | fitz.PDF_PERM_PRINT # permit printing
 | fitz.PDF_PERM_COPY # permit copying
 | fitz.PDF_PERM_ANNOTATE # permit annotations
)
 owner_pass = "owner" # owner password
 user_pass = "user" # user password
 encrypt_meth = fitz.PDF_ENCRYPT_AES_256 # strongest algorithm
 doc = fitz.open() # empty pdf
 page = doc.new_page() # empty page
 page.insert_text((50, 72), text) # insert the data
 doc.save(
 "secret.pdf",
 encryption=encrypt_meth, # set the encryption method
 owner_pw=owner_pass, # set the owner password
 user_pw=user_pass, # set the user password
 permissions=perm, # set permissions
)

Note

Taking it further

Opening this document with some viewer (Nitro Reader 5) reflects these settings:

Decrypting will automatically happen on save as before when no encryption parameters are provided.

To keep the encryption method of a PDF save it using encryption=fitz.PDF_ENCRYPT_KEEP. If doc.can_save_incrementally() == True, an incremental save is also possible.

To change the encryption method specify the full range of options above (encryption, owner_pw, user_pw, permissions). An incremental save is not possible in this case.

API reference

	Document.save()

Extracting Tables from a Page#

Tables can be found and extracted from any document Page.

 import fitz
 from pprint import pprint

 doc = fitz.open("test.pdf") # open document
 page = doc[0] # get the 1st page of the document
 tabs = page.find_tables() # locate and extract any tables on page
 print(f"{len(tabs.tables)} found on {page}") # display number of found tables
 if tabs.tables: # at least one table found?
 pprint(tabs[0].extract()) # print content of first table

Note

API reference

	Page.find_tables()

Important

There is also the pdf2docx extract tables method which is capable of table extraction if you prefer.

Getting Page Links#

Links can be extracted from a Page to return Link objects.

 import fitz

 for page in doc: # iterate the document pages
 link = page.first_link # a `Link` object or `None`

 while link: # iterate over the links on page
 # do something with the link, then:
 link = link.next # get next link, last one has `None` in its `next`

Note

API reference

	Page.first_link()

Getting All Annotations from a Document#

Annotations (Annot) on pages can be retrieved with the page.annots() method.

 import fitz

 for page in doc:
 for annot in page.annots():
 print(f'Annotation on page: {page.number} with type: {annot.type} and rect: {annot.rect}')

Note

API reference

	Page.annots()

Converting PDF Documents#

We recommend the pdf2docx library which uses PyMuPDF and the python-docx library to provide simple document conversion from PDF to DOCX format.

Do you have any feedback on this page?

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer to licensing information at artifex.com or contact Artifex Software Inc., 39 Mesa Street, Suite 108A, San Francisco CA 94129, United States for further information.

This documentation covers all versions up to 1.23.26.

 Next

 Tutorial

 Previous

 Installation

 Copyright © 2015-2024, Artifex

 Made with
 Furo

 Last updated on 08. Mar 2024

 On this page

 	The Basics	Opening a File
	Extract text from a PDF
	Extract images from a PDF
	Merging PDF files	Merging PDF files with other types of file

	Working with Coordinates
	Adding a watermark to a PDF
	Adding an image to a PDF
	Rotating a PDF
	Cropping a PDF
	Attaching Files
	Embedding Files
	Deleting Pages
	Re-Arranging Pages
	Copying Pages
	Selecting Pages
	Adding Blank Pages
	Inserting Pages with Text Content
	Splitting Single Pages
	Combining Single Pages
	PDF Encryption & Decryption
	Extracting Tables from a Page
	Getting Page Links
	Getting All Annotations from a Document
	Converting PDF Documents

