

 Hide navigation sidebar

 Hide table of contents sidebar

 Toggle site navigation sidebar

 PyMuPDF 1.23.25 documentation

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 PyMuPDF 1.23.25 documentation

 About

	Features Comparison
	Performance
	License and Copyright

User Guide

	Installation
	The Basics
	Tutorial

How to Guide

	Opening Files
	Text
	Images
	Annotations
	Drawing and Graphics
	Stories
	Journalling
	Multiprocessing
	Optional Content Support
	Low-Level Interfaces
	Common Issues and their Solutions

API Reference

	Module fitz
	ClassesToggle child pages in navigation
	Annot
	Archive
	Colorspace
	DisplayList
	Document
	DocumentWriter
	Font
	Identity
	IRect
	Link
	linkDest
	Matrix
	Outline
	Page
	Pixmap
	Point
	Quad
	Rect
	Shape
	Story
	TextPage
	TextWriter
	Tools
	Widget
	Xml

	Operator Algebra for Geometry Objects
	Low Level Functions and ClassesToggle child pages in navigation
	Functions
	Device
	Working together: DisplayList and TextPage

	Glossary
	Constants and Enumerations
	Color Database

Other

	Appendix 1: Details on Text Extraction
	Appendix 2: Considerations on Embedded Files
	Appendix 3: Assorted Technical Information
	Appendix 4: Performance Comparison Methodology
	Change Log
	Deprecated Names

 v: latest

 	Versions
	latest

 	Downloads
	pdf

 	On Read the Docs
	
 Project Home

	
 Builds

 Back to top

 Edit this page

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 English日本語

 Find #pymupdf on Discord

 Do you have any feedback on this page?

Journalling#

Starting with version 1.19.0, journalling is possible when updating PDF documents.

Journalling is a logging mechanism which permits either reverting or re-applying changes to a PDF. Similar to LUWs “Logical Units of Work” in modern database systems, one can group a set of updates into an “operation”. In MuPDF journalling, an operation plays the role of a LUW.

Note

In contrast to LUW implementations found in database systems, MuPDF journalling happens on a per document level. There is no support for simultaneous updates across multiple PDFs: one would have to establish one’s own logic here.

	Journalling must be enabled via a document method. Journalling is possible for existing or new documents. Journalling can be disabled only by closing the file.

	Once enabled, every change must happen inside an operation – otherwise an exception is raised. An operation is started and stopped via document methods. Updates happening between these two calls form an LUW and can thus collectively be rolled back or re-applied, or, in MuPDF terminology “undone” resp. “redone”.

	At any point, the journalling status can be queried: whether journalling is active, how many operations have been recorded, whether “undo” or “redo” is possible, the current position inside the journal, etc.

	The journal can be saved to or loaded from a file. These are document methods.

	When loading a journal file, compatibility with the document is checked and journalling is automatically enabled upon success.

	For an existing PDF being journalled, a special new save method is available: Document.save_snapshot(). This performs a special incremental save that includes all journalled updates so far. If its journal is saved at the same time (immediately after the document snapshot), then document and journal are in sync and can later on be used together to undo or redo operations or to continue journalled updates – just as if there had been no interruption.

	The snapshot PDF is a valid PDF in every aspect and fully usable. If the document is however changed in any way without using its journal file, then a desynchronization will take place and the journal is rendered unusable.

	Snapshot files are structured like incremental updates. Nevertheless, the internal journalling logic requires, that saving must happen to a new file. So the user should develop a file naming convention to support recognizable relationships between an original PDF, like original.pdf and its snapshot sets, like original-snap1.pdf / original-snap1.log, original-snap2.pdf / original-snap2.log, etc.

Example Session 1#

Description:

	Make a new PDF and enable journalling. Then add a page and some text lines – each as a separate operation.

	Navigate within the journal, undoing and redoing these updates and displaying status and file results:

>>> import fitz
>>> doc=fitz.open()
>>> doc.journal_enable()

>>> # try update without an operation:
>>> page = doc.new_page()
mupdf: No journalling operation started
... omitted lines
RuntimeError: No journalling operation started

>>> doc.journal_start_op("op1")
>>> page = doc.new_page()
>>> doc.journal_stop_op()

>>> doc.journal_start_op("op2")
>>> page.insert_text((100,100), "Line 1")
>>> doc.journal_stop_op()

>>> doc.journal_start_op("op3")
>>> page.insert_text((100,120), "Line 2")
>>> doc.journal_stop_op()

>>> doc.journal_start_op("op4")
>>> page.insert_text((100,140), "Line 3")
>>> doc.journal_stop_op()

>>> # show position in journal
>>> doc.journal_position()
(4, 4)
>>> # 4 operations recorded - positioned at bottom
>>> # what can we do?
>>> doc.journal_can_do()
{'undo': True, 'redo': False}
>>> # currently only undos are possible. Print page content:
>>> print(page.get_text())
Line 1
Line 2
Line 3

>>> # undo last insert:
>>> doc.journal_undo()
>>> # show combined status again:
>>> doc.journal_position();doc.journal_can_do()
(3, 4)
{'undo': True, 'redo': True}
>>> print(page.get_text())
Line 1
Line 2

>>> # our position is now second to last
>>> # last text insertion was reverted
>>> # but we can redo / move forward as well:
>>> doc.journal_redo()
>>> # our combined status:
>>> doc.journal_position();doc.journal_can_do()
(4, 4)
{'undo': True, 'redo': False}
>>> print(page.get_text())
Line 1
Line 2
Line 3
>>> # line 3 has appeared again!

Example Session 2#

Description:

	Similar to previous, but after undoing some operations, we now add a different update. This will cause:

	permanent removal of the undone journal entries

	the new update operation will become the new last entry.

>>> doc=fitz.open()
>>> doc.journal_enable()
>>> doc.journal_start_op("Page insert")
>>> page=doc.new_page()
>>> doc.journal_stop_op()
>>> for i in range(5):
 doc.journal_start_op("insert-%i" % i)
 page.insert_text((100, 100 + 20*i), "text line %i" %i)
 doc.journal_stop_op()

>>> # combined status info:
>>> doc.journal_position();doc.journal_can_do()
(6, 6)
{'undo': True, 'redo': False}

>>> for i in range(3): # revert last three operations
 doc.journal_undo()
>>> doc.journal_position();doc.journal_can_do()
(3, 6)
{'undo': True, 'redo': True}

>>> # now do a different update:
>>> doc.journal_start_op("Draw some line")
>>> page.draw_line((100,150), (300,150))
Point(300.0, 150.0)
>>> doc.journal_stop_op()
>>> doc.journal_position();doc.journal_can_do()
(4, 4)
{'undo': True, 'redo': False}

>>> # this has changed the journal:
>>> # previous last 3 text line operations were removed, and
>>> # we have only 4 operations: drawing the line is the new last one

Do you have any feedback on this page?

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer to licensing information at artifex.com or contact Artifex Software Inc., 39 Mesa Street, Suite 108A, San Francisco CA 94129, United States for further information.

This documentation covers all versions up to 1.23.25.

 Next

 Multiprocessing

 Previous

 Stories

 Copyright © 2015-2024, Artifex

 Made with
 Furo

 Last updated on 21. Feb 2024

 On this page

 	Journalling	Example Session 1
	Example Session 2

