

 Hide navigation sidebar

 Hide table of contents sidebar

 Toggle site navigation sidebar

 PyMuPDF 1.23.26 documentation

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 PyMuPDF 1.23.26 documentation

 About

	Features Comparison
	Performance
	License and Copyright

User Guide

	Installation
	The Basics
	Tutorial
	Resources

How to Guide

	Opening Files
	Text
	Images
	Annotations
	Drawing and Graphics
	Stories
	Journalling
	Multiprocessing
	Optional Content Support
	Low-Level Interfaces
	Common Issues and their Solutions

API Reference

	Module fitz
	ClassesToggle child pages in navigation
	Annot
	Archive
	Colorspace
	DisplayList
	Document
	DocumentWriter
	Font
	Identity
	IRect
	Link
	linkDest
	Matrix
	Outline
	Page
	Pixmap
	Point
	Quad
	Rect
	Shape
	Story
	TextPage
	TextWriter
	Tools
	Widget
	Xml

	Operator Algebra for Geometry Objects
	Low Level Functions and ClassesToggle child pages in navigation
	Functions
	Device
	Working together: DisplayList and TextPage

	Glossary
	Constants and Enumerations
	Color Database

Other

	Appendix 1: Details on Text Extraction
	Appendix 2: Considerations on Embedded Files
	Appendix 3: Assorted Technical Information
	Appendix 4: Performance Comparison Methodology
	Change Log
	Deprecated Names

 v: latest

 	Versions
	latest

 	Downloads
	pdf

 	On Read the Docs
	
 Project Home

	
 Builds

 Back to top

 Edit this page

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 English日本語

 Find #pymupdf on Discord

 Do you have any feedback on this page?

Archive#

	New in v1.21.0

This class represents a generalization of file folders and container files like ZIP and TAR archives. Archives allow accessing arbitrary collections of file folders, ZIP / TAR files and single binary data elements as if they all were part of one hierarchical tree of folders.

In PyMuPDF, archives are currently only used by Story objects to specify where to look for fonts, images and other resources.

	Method / Attribute
	Short Description

	Archive.add()
	add new data to the archive

	Archive.has_entry()
	check if given name is a member

	Archive.read_entry()
	read the data given by the name

	Archive.entry_list
	list[dict] of archive items

Class API

	
class Archive#
		
__init__(self[, content[, path]])#
	Creates a new archive. Without parameters, an empty archive is created.

If provided, content may be one of the following:

	another Archive: the archive is being made a sub-archive of the new one.

	a string: this must be the name of a local folder or file. pathlib.Path objects are also supported.

	A folder will be converted to a sub-archive, so its files (and any sub-folders) can be accessed by their names.

	A file will be read with mode "rb" and these binary data (a bytes object) be treated as a single-member sub-archive. In this case, the path parameter is mandatory and should be the member name under which this item can be found / retrieved.

	a zipfile.ZipFile or tarfile.TarFile object: Will be added as a sub-archive.

	a Python binary object (bytes, bytearray, io.BytesIO): this will add a single-member sub-archive. In this case, the path parameter is mandatory and should be the member name under which this item can be found / retrieved.

	a tuple (data, name): This will add a single-member sub-archive with the member name name. data may be a Python binary object or a local file name (in which case its binary file content is used). Use this format if you need to specify path.

	a Python sequence: This is a convenience format to specify any combination of the above.

If provided, path must be a string.

	If content is either binary data or a file name, this parameter is mandatory and must be the name under which the data can be found.

	Otherwise this parameter is optional. It can be used to simulate a folder name or a mount point, under which this sub-archive’s elements can be found. For example this specification Archive((data, "name"), "path") means that data will be found using the element name "path/name". Similar is true for other sub-archives: to retrieve members of a ZIP sub-archive, their names must be prefixed with "path/". The main purpose of this parameter probably is to differentiate between duplicate names.

Note

If duplicate entry names exist in the archive, always the last entry with that name will be found / retrieved. During archive creation, or appending more data to an archive (see Archive.add()) no check for duplicates will be made. Use the path parameter to prevent this from happening.

	
add(content[, path])#
	Append a sub-archive. The meaning of the parameters are exactly the same as explained above. Of course, parameter content is not optional here.

	
has_entry(name)#
	Checks whether an entry exists in any of the sub-archives.

	Parameters:
	name (str) – The fully qualified name of the entry. So must include any path prefix under which the entry’s sub-archive has been added.

	Returns:
	True or False.

	
read_entry(name)#
	Retrieve the data of an entry.

	Parameters:
	name (str) – The fully qualified name of the entry. So must include any path prefix under which the entry’s sub-archive has been added.

	Returns:
	The binary data (bytes) of the entry. If not found, an exception is raised.

	
entry_list#
	A list of the archive’s sub-archives. Each list item is a dictionary with the following keys:

	entries – a list of (top-level) entry names in this sub-archive.

	fmt – the format of the sub-archive. This is one of the strings “dir” (file folder), “zip” (ZIP archive), “tar” (TAR archive), or “tree” for single binary entries or file content.

	path – the value of the path parameter under which this sub-archive was added.

Example:

>>> from pprint import pprint
>>> import fitz
>>> dir1 = "fitz-32" # a folder name
>>> dir2 = "fitz-64" # a folder name
>>> img = ("nur-ruhig.jpg", "img") # an image file
>>> members = (dir1, img, dir2) # we want to append these in one go
>>> arch = fitz.Archive()
>>> arch.add(members, path="mypath")
>>> pprint(arch.entry_list)
[{'entries': ['310', '37', '38', '39'], 'fmt': 'dir', 'path': 'mypath'},
{'entries': ['img'], 'fmt': 'tree', 'path': 'mypath'},
{'entries': ['310', '311', '37', '38', '39', 'pypy'],
'fmt': 'dir',
'path': 'mypath'}]
>>>

Do you have any feedback on this page?

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer to licensing information at artifex.com or contact Artifex Software Inc., 39 Mesa Street, Suite 108A, San Francisco CA 94129, United States for further information.

This documentation covers all versions up to 1.23.26.

 Next

 Colorspace

 Previous

 Annot

 Copyright © 2015-2024, Artifex

 Made with
 Furo

 Last updated on 08. Mar 2024

 On this page

 	Archive	Archive	Archive.__init__()
	Archive.add()
	Archive.has_entry()
	Archive.read_entry()
	Archive.entry_list

