

 Hide navigation sidebar

 Hide table of contents sidebar

 Toggle site navigation sidebar

 PyMuPDF 1.23.26 documentation

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 PyMuPDF 1.23.26 documentation

 About

	Features Comparison
	Performance
	License and Copyright

User Guide

	Installation
	The Basics
	Tutorial
	Resources

How to Guide

	Opening Files
	Text
	Images
	Annotations
	Drawing and Graphics
	Stories
	Journalling
	Multiprocessing
	Optional Content Support
	Low-Level Interfaces
	Common Issues and their Solutions

API Reference

	Module fitz
	ClassesToggle child pages in navigation
	Annot
	Archive
	Colorspace
	DisplayList
	Document
	DocumentWriter
	Font
	Identity
	IRect
	Link
	linkDest
	Matrix
	Outline
	Page
	Pixmap
	Point
	Quad
	Rect
	Shape
	Story
	TextPage
	TextWriter
	Tools
	Widget
	Xml

	Operator Algebra for Geometry Objects
	Low Level Functions and ClassesToggle child pages in navigation
	Functions
	Device
	Working together: DisplayList and TextPage

	Glossary
	Constants and Enumerations
	Color Database

Other

	Appendix 1: Details on Text Extraction
	Appendix 2: Considerations on Embedded Files
	Appendix 3: Assorted Technical Information
	Appendix 4: Performance Comparison Methodology
	Change Log
	Deprecated Names

 v: latest

 	Versions
	latest

 	Downloads
	pdf

 	On Read the Docs
	
 Project Home

	
 Builds

 Back to top

 Edit this page

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 English日本語

 Find #pymupdf on Discord

 Do you have any feedback on this page?

Rect#

Rect represents a rectangle defined by four floating point numbers x0, y0, x1, y1. They are treated as being coordinates of two diagonally opposite points. The first two numbers are regarded as the “top left” corner P(x0,y0) and P(x1,y1) as the “bottom right” one. However, these two properties need not coincide with their intuitive meanings – read on.

The following remarks are also valid for IRect objects:

	A rectangle in the sense of (Py-) MuPDF (and PDF) always has borders parallel to the x- resp. y-axis. A general orthogonal tetragon is not a rectangle – in contrast to the mathematical definition.

	The constructing points can be (almost! – see below) anywhere in the plane – they need not even be different, and e.g. “top left” need not be the geometrical “north-western” point.

	Units are in points, where 72 points is 1 inch.

		For any given quadruple of numbers, the geometrically “same” rectangle can be defined in four different ways:
		Rect(P(x0,y0), P(x1,y1))

	Rect(P(x1,y1), P(x0,y0))

	Rect(P(x0,y1), P(x1,y0))

	Rect(P(x1,y0), P(x0,y1))

(Changed in v1.19.0) Hence some classification:

	A rectangle is called valid if x0 <= x1 and y0 <= y1 (i.e. the bottom right point is “south-eastern” to the top left one), otherwise invalid. Of the four alternatives above, only the first is valid. Please take into account, that in MuPDF’s coordinate system, the y-axis is oriented from top to bottom. Invalid rectangles have been called infinite in earlier versions.

	A rectangle is called empty if x0 >= x1 or y0 >= y1. This implies, that invalid rectangles are also always empty. And width (resp. height) is set to zero if x0 > x1 (resp. y0 > y1). In previous versions, a rectangle was empty only if one of width or height was zero.

	Rectangle coordinates cannot be outside the number range from FZ_MIN_INF_RECT = -2147483648 to FZ_MAX_INF_RECT = 2147483520. Both values have been chosen, because they are the smallest / largest 32bit integers that survive C float conversion roundtrips. In previous versions there was no limit for coordinate values.

	There is exactly one “infinite” rectangle, defined by x0 = y0 = FZ_MIN_INF_RECT and x1 = y1 = FZ_MAX_INF_RECT. It contains every other rectangle. It is mainly used for technical purposes – e.g. when a function call should ignore a formally required rectangle argument. This rectangle is not empty.

	Rectangles are (semi-) open: The right and the bottom edges (including the resp. corners) are not considered part of the rectangle. This implies, that only the top-left corner (x0, y0) can ever belong to the rectangle - the other three corners never do. An empty rectangle contains no corners at all.

	Here is an overview of the changes.

	Notion
	Versions < 1.19.0
	Versions 1.19.*

	empty
	x0 = x1 or y0 = y1
	x0 >= x1 or y0 >= y1 – includes invalid rects

	valid
	n/a
	x0 <= x1 and y0 <= y1

	infinite
	all rects where x0 > x1 or y1 > y0
	exactly one infinite rect / irect!

	coordinate values
	all numbers
	FZ_MIN_INF_RECT <= number <= FZ_MAX_INF_RECT

	borders, corners
	are parts of the rectangle
	right and bottom corners and edges are outside

	There are new top level functions defining infinite and standard empty rectangles and quads, see INFINITE_RECT() and friends.

	Methods / Attributes
	Short Description

	Rect.contains()
	checks containment of point_likes and rect_likes

	Rect.get_area()
	calculate rectangle area

	Rect.include_point()
	enlarge rectangle to also contain a point

	Rect.include_rect()
	enlarge rectangle to also contain another one

	Rect.intersect()
	common part with another rectangle

	Rect.intersects()
	checks for non-empty intersections

	Rect.morph()
	transform with a point and a matrix

	Rect.torect()
	the matrix that transforms to another rectangle

	Rect.norm()
	the Euclidean norm

	Rect.normalize()
	makes a rectangle valid

	Rect.round()
	create smallest IRect containing rectangle

	Rect.transform()
	transform rectangle with a matrix

	Rect.bottom_left
	bottom left point, synonym bl

	Rect.bottom_right
	bottom right point, synonym br

	Rect.height
	rectangle height

	Rect.irect
	equals result of method round()

	Rect.is_empty
	whether rectangle is empty

	Rect.is_valid
	whether rectangle is valid

	Rect.is_infinite
	whether rectangle is infinite

	Rect.top_left
	top left point, synonym tl

	Rect.top_right
	top_right point, synonym tr

	Rect.quad
	Quad made from rectangle corners

	Rect.width
	rectangle width

	Rect.x0
	left corners’ x coordinate

	Rect.x1
	right corners’ x -coordinate

	Rect.y0
	top corners’ y coordinate

	Rect.y1
	bottom corners’ y coordinate

Class API

	
class Rect#
		
__init__(self)#
	

	
__init__(self, x0, y0, x1, y1)#
	

	
__init__(self, top_left, bottom_right)#
	

	
__init__(self, top_left, x1, y1)#
	

	
__init__(self, x0, y0, bottom_right)#
	

	
__init__(self, rect)#
	

	
__init__(self, sequence)#
	Overloaded constructors: top_left, bottom_right stand for point_like objects, “sequence” is a Python sequence type of 4 numbers (see Using Python Sequences as Arguments in PyMuPDF), “rect” means another rect_like, while the other parameters mean coordinates.

If “rect” is specified, the constructor creates a new copy of it.

Without parameters, the empty rectangle Rect(0.0, 0.0, 0.0, 0.0) is created.

	
round()#
	Creates the smallest containing IRect. This is not the same as simply rounding the rectangle’s edges: The top left corner is rounded upwards and to the left while the bottom right corner is rounded downwards and to the right.

>>> fitz.Rect(0.5, -0.01, 123.88, 455.123456).round()
IRect(0, -1, 124, 456)

	If the rectangle is empty, the result is also empty.

	Possible paradox: The result may be empty, even if the rectangle is not empty! In such cases, the result obviously does not contain the rectangle. This is because MuPDF’s algorithm allows for a small tolerance (1e-3). Example:

>>> r = fitz.Rect(100, 100, 200, 100.001)
>>> r.is_empty # rect is NOT empty
False
>>> r.round() # but its irect IS empty!
fitz.IRect(100, 100, 200, 100)
>>> r.round().is_empty
True

	Return type:
	IRect

	
transform(m)#
	Transforms the rectangle with a matrix and replaces the original. If the rectangle is empty or infinite, this is a no-operation.

	Parameters:
	m (Matrix) – The matrix for the transformation.

	Return type:
	Rect

	Returns:
	the smallest rectangle that contains the transformed original.

	
intersect(r)#
	The intersection (common rectangular area, largest rectangle contained in both) of the current rectangle and r is calculated and replaces the current rectangle. If either rectangle is empty, the result is also empty. If r is infinite, this is a no-operation. If the rectangles are (mathematically) disjoint sets, then the result is invalid. If the result is valid but empty, then the rectangles touch each other in a corner or (part of) a side.

	Parameters:
	r (Rect) – Second rectangle

	
include_rect(r)#
	The smallest rectangle containing the current one and r is calculated and replaces the current one. If either rectangle is infinite, the result is also infinite. If one is empty, the other one will be taken as the result.

	Parameters:
	r (Rect) – Second rectangle

	
include_point(p)#
	The smallest rectangle containing the current one and point p is calculated and replaces the current one. The infinite rectangle remains unchanged. To create a rectangle containing a series of points, start with (the empty) fitz.Rect(p1, p1) and successively include the remaining points.

	Parameters:
	p (Point) – Point to include.

	
get_area([unit])#
	Calculate the area of the rectangle and, with no parameter, equals abs(rect). Like an empty rectangle, the area of an infinite rectangle is also zero. So, at least one of fitz.Rect(p1, p2) and fitz.Rect(p2, p1) has a zero area.

	Parameters:
	unit (str) – Specify required unit: respective squares of px (pixels, default), in (inches), cm (centimeters), or mm (millimeters).

	Return type:
	float

	
contains(x)#
	Checks whether x is contained in the rectangle. It may be an IRect, Rect, Point or number. If x is an empty rectangle, this is always true. If the rectangle is empty this is always False for all non-empty rectangles and for all points. x in rect and rect.contains(x) are equivalent.

	Parameters:
	x (rect_like or point_like.) – the object to check.

	Return type:
	bool

	
intersects(r)#
	Checks whether the rectangle and a rect_like “r” contain a common non-empty Rect. This will always be False if either is infinite or empty.

	Parameters:
	r (rect_like) – the rectangle to check.

	Return type:
	bool

	
torect(rect)#
		New in version 1.19.3

Compute the matrix which transforms this rectangle to a given one.

	Parameters:
	rect (rect_like) – the target rectangle. Must not be empty or infinite.

	Return type:
	Matrix

	Returns:
	a matrix mat such that self * mat = rect. Can for example be used to transform between the page and the pixmap coordinates. See an example use here How to Use Pixmaps: Checking Text Visibility.

	
morph(fixpoint, matrix)#
		New in version 1.17.0

Return a new quad after applying a matrix to the rectangle using the fixed point fixpoint.

	Parameters:
		fixpoint (point_like) – the fixed point.

	matrix (matrix_like) – the matrix.

	Returns:
	a new Quad. This a wrapper for the same-named quad method. If infinite, the infinite quad is returned.

	
norm()#
		New in version 1.16.0

Return the Euclidean norm of the rectangle treated as a vector of four numbers.

	
normalize()#
	Replace the rectangle with its valid version. This is done by shuffling the rectangle corners. After completion of this method, the bottom right corner will indeed be south-eastern to the top left one (but may still be empty).

	
irect#
	Equals result of method round().

	
top_left#
	

	
tl#
	Equals Point(x0, y0).

	Type:
	Point

	
top_right#
	

	
tr#
	Equals Point(x1, y0).

	Type:
	Point

	
bottom_left#
	

	
bl#
	Equals Point(x0, y1).

	Type:
	Point

	
bottom_right#
	

	
br#
	Equals Point(x1, y1).

	Type:
	Point

	
quad#
	The quadrilateral Quad(rect.tl, rect.tr, rect.bl, rect.br).

	Type:
	Quad

	
width#
	Width of the rectangle. Equals max(x1 - x0, 0).

	Return type:
	float

	
height#
	Height of the rectangle. Equals max(y1 - y0, 0).

	Return type:
	float

	
x0#
	X-coordinate of the left corners.

	Type:
	float

	
y0#
	Y-coordinate of the top corners.

	Type:
	float

	
x1#
	X-coordinate of the right corners.

	Type:
	float

	
y1#
	Y-coordinate of the bottom corners.

	Type:
	float

	
is_infinite#
	True if this is the infinite rectangle.

	Type:
	bool

	
is_empty#
	True if rectangle is empty.

	Type:
	bool

	
is_valid#
	True if rectangle is valid.

	Type:
	bool

Note

	This class adheres to the Python sequence protocol, so components can be accessed via their index, too. Also refer to Using Python Sequences as Arguments in PyMuPDF.

	Rectangles can be used with arithmetic operators – see chapter Operator Algebra for Geometry Objects.

Do you have any feedback on this page?

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer to licensing information at artifex.com or contact Artifex Software Inc., 39 Mesa Street, Suite 108A, San Francisco CA 94129, United States for further information.

This documentation covers all versions up to 1.23.26.

 Next

 Shape

 Previous

 Quad

 Copyright © 2015-2024, Artifex

 Made with
 Furo

 Last updated on 08. Mar 2024

 On this page

 	Rect	Rect	Rect.__init__()
	Rect.__init__()
	Rect.__init__()
	Rect.__init__()
	Rect.__init__()
	Rect.__init__()
	Rect.__init__()
	Rect.round()
	Rect.transform()
	Rect.intersect()
	Rect.include_rect()
	Rect.include_point()
	Rect.get_area()
	Rect.contains()
	Rect.intersects()
	Rect.torect()
	Rect.morph()
	Rect.norm()
	Rect.normalize()
	Rect.irect
	Rect.top_left
	Rect.tl
	Rect.top_right
	Rect.tr
	Rect.bottom_left
	Rect.bl
	Rect.bottom_right
	Rect.br
	Rect.quad
	Rect.width
	Rect.height
	Rect.x0
	Rect.y0
	Rect.x1
	Rect.y1
	Rect.is_infinite
	Rect.is_empty
	Rect.is_valid

