

 Hide navigation sidebar

 Hide table of contents sidebar

 Toggle site navigation sidebar

 PyMuPDF 1.23.26 documentation

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 PyMuPDF 1.23.26 documentation

 About

	Features Comparison
	Performance
	License and Copyright

User Guide

	Installation
	The Basics
	Tutorial
	Resources

How to Guide

	Opening Files
	Text
	Images
	Annotations
	Drawing and Graphics
	Stories
	Journalling
	Multiprocessing
	Optional Content Support
	Low-Level Interfaces
	Common Issues and their Solutions

API Reference

	Module fitz
	ClassesToggle child pages in navigation
	Annot
	Archive
	Colorspace
	DisplayList
	Document
	DocumentWriter
	Font
	Identity
	IRect
	Link
	linkDest
	Matrix
	Outline
	Page
	Pixmap
	Point
	Quad
	Rect
	Shape
	Story
	TextPage
	TextWriter
	Tools
	Widget
	Xml

	Operator Algebra for Geometry Objects
	Low Level Functions and ClassesToggle child pages in navigation
	Functions
	Device
	Working together: DisplayList and TextPage

	Glossary
	Constants and Enumerations
	Color Database

Other

	Appendix 1: Details on Text Extraction
	Appendix 2: Considerations on Embedded Files
	Appendix 3: Assorted Technical Information
	Appendix 4: Performance Comparison Methodology
	Change Log
	Deprecated Names

 v: latest

 	Versions
	latest

 	Downloads
	pdf

 	On Read the Docs
	
 Project Home

	
 Builds

 Back to top

 Edit this page

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 English日本語

 Find #pymupdf on Discord

 Do you have any feedback on this page?

Glossary#

	
coordinate#
	This is an esential general mathematical / geometrical term for understanding this documentation. Please see this section for a more detailed discussion: Coordinates.

	
matrix_like#
	A Python sequence of 6 numbers.

	
rect_like#
	A Python sequence of 4 numbers.

	
irect_like#
	A Python sequence of 4 integers.

	
point_like#
	A Python sequence of 2 numbers.

	
quad_like#
	A Python sequence of 4 point_like items.

	
inheritable#
	A number of values in a PDF can inherited by objects further down in a parent-child relationship. The mediabox (physical size) of pages may for example be specified only once or in some node(s) of the pagetree and will then be taken as value for all kids, that do not specify their own value.

	
MediaBox#
	A PDF array of 4 floats specifying a physical page size – (inheritable, mandatory). This rectangle should contain all other PDF – optional – page rectangles, which may be specified in addition: CropBox, TrimBox, ArtBox and BleedBox. Please consult Adobe PDF References for details. The MediaBox is the only rectangle, for which there is no difference between MuPDF and PDF coordinate systems: Page.mediabox will always show the same coordinates as the /MediaBox key in a page’s object definition. For all other rectangles, MuPDF transforms y coordinates such that the top border is the point of reference. This can sometimes be confusing – you may for example encounter a situation like this one:

	The page definition contains the following identical values: /MediaBox [36 45 607.5 765], /CropBox [36 45 607.5 765].

	PyMuPDF accordingly shows page.mediabox = Rect(36.0, 45.0, 607.5, 765.0).

	BUT: page.cropbox = Rect(36.0, 0.0, 607.5, 720.0), because the two y-coordinates have been transformed (45 subtracted from both of them).

	
CropBox#
	A PDF array of 4 floats specifying a page’s visible area – (inheritable, optional). It is the default for TrimBox, ArtBox and BleedBox. If not present, it defaults to MediaBox. This value is not affected if the page is rotated – in contrast to Page.rect. Also, other than the page rectangle, the top-left corner of the cropbox may or may not be (0, 0).

	
catalog#
	A central PDF dictionary – also called the “root” – containing document-wide parameters and pointers to many other information. Its xref is returned by Document.pdf_catalog().

	
trailer#
	More precisely, the PDF trailer contains information in dictionary format. It is usually located at the file’s end. In this dictionary, you will find things like the xrefs of the catalog and the metadata, the number of xref numbers, etc. Here is the definition of the PDF spec:

“The trailer of a PDF file enables an application reading the file to quickly find the cross-reference table and certain special objects. Applications should read a PDF file from its end.”

To access the trailer in PyMuPDF, use the usual methods Document.xref_object(), Document.xref_get_key() and Document.xref_get_keys() with -1 instead of a positive xref number.

	
contents#
	A content stream is a PDF object with an attached stream, whose data consists of a sequence of instructions describing the graphical elements to be painted on a page, see “Stream Objects” on page 19 of Adobe PDF References. For an overview of the mini-language used in these streams, see chapter “Operator Summary” on page 643 of the Adobe PDF References. A PDF page can have none to many contents objects. If it has none, the page is empty (but still may show annotations). If it has several, they will be interpreted in sequence as if their instructions had been present in one such object (i.e. like in a concatenated string). It should be noted that there are more stream object types which use the same syntax: e.g. appearance dictionaries associated with annotations and Form XObjects.

PyMuPDF provides a number of methods to deal with contents of PDF pages:

	Page.read_contents() – reads and concatenates all page contents into one bytes object.

	Page.clean_contents() – a wrapper of a MuPDF function that reads, concatenates and syntax-cleans all page contents. After this, only one /Contents object will exist. In addition, page resources will have been synchronized with it such that it will contain exactly those images, fonts and other objects that the page actually references.

	Page.get_contents() – return a list of xref numbers of a page’s contents objects. May be empty. Use Document.xref_stream() with one of these xrefs to read the resp. contents section.

	Page.set_contents() – set a page’s /Contents key to the provided xref number.

	
resources#
	A dictionary containing references to any resources (like images or fonts) required by a PDF page (required, inheritable, Adobe PDF References p. 81) and certain other objects (Form XObjects). This dictionary appears as a sub-dictionary in the object definition under the key /Resources. Being an inheritable object type, there may exist “parent” resources for all pages or certain subsets of pages.

	
dictionary#
	A PDF object type, which is somewhat comparable to the same-named Python notion: “A dictionary object is an associative table containing pairs of objects, known as the dictionary’s entries. The first element of each entry is the key and the second element is the value. The key must be a name (…). The value can be any kind of object, including another dictionary. A dictionary entry whose value is null (…) is equivalent to an absent entry.” (Adobe PDF References p. 18).

Dictionaries are the most important object type in PDF. Here is an example (describing a page):

<<
/Contents 40 0 R % value: an indirect object
/Type/Page % value: a name object
/MediaBox[0 0 595.32 841.92] % value: an array object
/Rotate 0 % value: a number object
/Parent 12 0 R % value: an indirect object
/Resources<< % value: a dictionary object
 /ExtGState<</R7 26 0 R>>
 /Font<<
 /R8 27 0 R/R10 21 0 R/R12 24 0 R/R14 15 0 R
 /R17 4 0 R/R20 30 0 R/R23 7 0 R /R27 20 0 R
 >>
 /ProcSet[/PDF/Text] % value: array of two name objects
 >>
/Annots[55 0 R] % value: array, one entry (indirect object)
>>

Contents, Type, MediaBox, etc. are keys, 40 0 R, Page, [0 0 595.32 841.92], etc. are the respective values. The strings “<<” and “>>” are used to enclose object definitions.

This example also shows the syntax of nested dictionary values: Resources has an object as its value, which in turn is a dictionary with keys like ExtGState (with the value <</R7 26 0 R>>, which is another dictionary), etc.

	
page#
	A PDF page is a dictionary object which defines one page in a PDF, see Adobe PDF References p. 71.

	
pagetree#
	The pages of a document are accessed through a structure known as the page tree, which defines the ordering of pages in the document. The tree structure allows PDF consumer applications, using only limited memory, to quickly open a document containing thousands of pages. The tree contains nodes of two types: intermediate nodes, called page tree nodes, and leaf nodes, called page objects. (Adobe PDF References p. 75).

While it is possible to list all page references in just one array, PDFs with many pages are often created using balanced tree structures (“page trees”) for faster access to any single page. In relation to the total number of pages, this can reduce the average page access time by page number from a linear to some logarithmic order of magnitude.

For fast page access, MuPDF can use its own array in memory – independently from what may or may not be present in the document file. This array is indexed by page number and therefore much faster than even the access via a perfectly balanced page tree.

	
object#
	Similar to Python, PDF supports the notion object, which can come in eight basic types: boolean values (“true” or “false”), integer and real numbers, strings (always enclosed in brackets – either “()”, or “<>” to indicate hexadecimal), names (must always start with a “/”, e.g. /Contents), arrays (enclosed in brackets “[]”), dictionaries (enclosed in brackets “<<>>”), streams (enclosed by keywords “stream” / “endstream”), and the null object (“null”) (Adobe PDF References p. 13). Objects can be made identifiable by assigning a label. This label is then called indirect object. PyMuPDF supports retrieving definitions of indirect objects via their cross reference number via Document.xref_object().

	
stream#
	A PDF dictionary object type which is followed by a sequence of bytes, similar to Python bytes. “However, a PDF application can read a stream incrementally, while a string must be read in its entirety. Furthermore, a stream can be of unlimited length, whereas a string is subject to an implementation limit. For this reason, objects with potentially large amounts of data, such as images and page descriptions, are represented as streams.” “A stream consists of a dictionary followed by zero or more bytes bracketed between the keywords stream and endstream”:

nnn 0 obj
<<
 dictionary definition
>>
stream
(zero or more bytes)
endstream
endobj

See Adobe PDF References p. 19. PyMuPDF supports retrieving stream content via Document.xref_stream(). Use Document.is_stream() to determine whether an object is of stream type.

	
unitvector#
	A mathematical notion meaning a vector of norm (“length”) 1 – usually the Euclidean norm is implied. In PyMuPDF, this term is restricted to Point objects, see Point.unit.

	
xref#
	Abbreviation for cross-reference number: this is an integer unique identification for objects in a PDF. There exists a cross-reference table (which may physically consist of several separate segments) in each PDF, which stores the relative position of each object for quick lookup. The cross-reference table is one entry longer than the number of existing object: item zero is reserved and must not be used in any way. Many PyMuPDF classes have an xref attribute (which is zero for non-PDFs), and one can find out the total number of objects in a PDF via Document.xref_length() - 1.

	
fontsize#
	When referring to font size this metric is measured in points where 1 inch = 72 points.

	
resolution#
	Images and Pixmap objects may contain resolution information provided as “dots per inch”, dpi, in each direction (horizontal and vertical). When MuPDF reads an image from a file or from a PDF object, it will parse this information and put it in Pixmap.xres, Pixmap.yres, respectively. If it finds no meaningful information in the input (like non-positive values or values exceeding 4800), it will use “sane” defaults instead. The usual default value is 96, but it may also be 72 in some cases (e.g. for JPX images).

	
OCPD#
	Optional content properties dictionary - a sub dictionary of the PDF catalog. The central place to store optional content information, which is identified by the key /OCProperties. This dictionary has two required and one optional entry: (1) /OCGs, required, an array listing all optional content groups, (2) /D, required, the default optional content configuration dictionary (OCCD), (3) /Configs, optional, an array of alternative OCCDs.

	
OCCD#
	Optional content configuration dictionary - a PDF dictionary inside the PDF OCPD. It stores a setting of ON / OFF states of OCGs and how they are presented to a PDF viewer program. Selecting a configuration is quick way to achieve temporary mass visibility state changes. After opening a PDF, the /D configuration of the OCPD is always activated. Viewer should offer a way to switch between the /D, or one of the optional configurations contained in array /Configs.

	
OCG#
	Optional content group – a dictionary object used to control the visibility of other PDF objects like images or annotations. Independently on which page they are defined, objects with the same OCG can simultaneously be shown or hidden by setting their OCG to ON or OFF. This can be achieved via the user interface provided by many PDF viewers (Adobe Acrobat), or programmatically.

	
OCMD#
	Optional content membership dictionary – a dictionary object which can be used like an OCG: it has a visibility state. The visibility of an OCMD is computed: it is a logical expression, which uses the state of one or more OCGs to produce a boolean value. The expression’s result is interpreted as ON (true) or OFF (false).

	
ligature#
	Some frequent character combinations are represented by their own special glyphs in more advanced fonts. Typical examples are “fi”, “fl”, “ffi” and “ffl”. These compounds are called ligatures. In PyMuPDF text extractions, there is the option to either return the corresponding unicode unchanged, or split ligatures up into their constituent parts: “fi” ==> “f” + “i”, etc.

Do you have any feedback on this page?

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer to licensing information at artifex.com or contact Artifex Software Inc., 39 Mesa Street, Suite 108A, San Francisco CA 94129, United States for further information.

This documentation covers all versions up to 1.23.26.

 Next

 Constants and Enumerations

 Previous

 Working together: DisplayList and TextPage

 Copyright © 2015-2024, Artifex

 Made with
 Furo

 Last updated on 08. Mar 2024

 On this page

 	Glossary	coordinate
	matrix_like
	rect_like
	irect_like
	point_like
	quad_like
	inheritable
	MediaBox
	CropBox
	catalog
	trailer
	contents
	resources
	dictionary
	page
	pagetree
	object
	stream
	unitvector
	xref
	fontsize
	resolution
	OCPD
	OCCD
	OCG
	OCMD
	ligature

