

 Hide navigation sidebar

 Hide table of contents sidebar

 Toggle site navigation sidebar

 PyMuPDF 1.23.26 documentation

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 PyMuPDF 1.23.26 documentation

 About

	Features Comparison
	Performance
	License and Copyright

User Guide

	Installation
	The Basics
	Tutorial
	Resources

How to Guide

	Opening Files
	Text
	Images
	Annotations
	Drawing and Graphics
	Stories
	Journalling
	Multiprocessing
	Optional Content Support
	Low-Level Interfaces
	Common Issues and their Solutions

API Reference

	Module fitz
	ClassesToggle child pages in navigation
	Annot
	Archive
	Colorspace
	DisplayList
	Document
	DocumentWriter
	Font
	Identity
	IRect
	Link
	linkDest
	Matrix
	Outline
	Page
	Pixmap
	Point
	Quad
	Rect
	Shape
	Story
	TextPage
	TextWriter
	Tools
	Widget
	Xml

	Operator Algebra for Geometry Objects
	Low Level Functions and ClassesToggle child pages in navigation
	Functions
	Device
	Working together: DisplayList and TextPage

	Glossary
	Constants and Enumerations
	Color Database

Other

	Appendix 1: Details on Text Extraction
	Appendix 2: Considerations on Embedded Files
	Appendix 3: Assorted Technical Information
	Appendix 4: Performance Comparison Methodology
	Change Log
	Deprecated Names

 v: latest

 	Versions
	latest

 	Downloads
	pdf

 	On Read the Docs
	
 Project Home

	
 Builds

 Back to top

 Edit this page

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 English日本語

 Find #pymupdf on Discord

 Do you have any feedback on this page?

Document#

This class represents a document. It can be constructed from a file or from memory.

There exists the alias open for this class, i.e. fitz.Document(...) and fitz.open(...) do exactly the same thing.

For details on embedded files refer to Appendix 3.

Note

Starting with v1.17.0, a new page addressing mechanism for EPUB files only is supported. This document type is internally organized in chapters such that pages can most efficiently be found by their so-called “location”. The location is a tuple (chapter, pno) consisting of the chapter number and the page number in that chapter. Both numbers are zero-based.

While it is still possible to locate a page via its (absolute) number, doing so may mean that the complete EPUB document must be laid out before the page can be addressed. This may have a significant performance impact if the document is very large. Using the page’s (chapter, pno) prevents this from happening.

To maintain a consistent API, PyMuPDF supports the page location syntax for all file types – documents without this feature simply have just one chapter. Document.load_page() and the equivalent index access now also support a location argument.

There are a number of methods for converting between page numbers and locations, for determining the chapter count, the page count per chapter, for computing the next and the previous locations, and the last page location of a document.

	Method / Attribute
	Short Description

	Document.add_layer()
	PDF only: make new optional content configuration

	Document.add_ocg()
	PDF only: add new optional content group

	Document.authenticate()
	gain access to an encrypted document

	Document.can_save_incrementally()
	check if incremental save is possible

	Document.chapter_page_count()
	number of pages in chapter

	Document.close()
	close the document

	Document.convert_to_pdf()
	write a PDF version to memory

	Document.copy_page()
	PDF only: copy a page reference

	Document.del_toc_item()
	PDF only: remove a single TOC item

	Document.delete_page()
	PDF only: delete a page

	Document.delete_pages()
	PDF only: delete multiple pages

	Document.embfile_add()
	PDF only: add a new embedded file from buffer

	Document.embfile_count()
	PDF only: number of embedded files

	Document.embfile_del()
	PDF only: delete an embedded file entry

	Document.embfile_get()
	PDF only: extract an embedded file buffer

	Document.embfile_info()
	PDF only: metadata of an embedded file

	Document.embfile_names()
	PDF only: list of embedded files

	Document.embfile_upd()
	PDF only: change an embedded file

	Document.extract_font()
	PDF only: extract a font by xref

	Document.extract_image()
	PDF only: extract an embedded image by xref

	Document.ez_save()
	PDF only: Document.save() with different defaults

	Document.find_bookmark()
	retrieve page location after laid out document

	Document.fullcopy_page()
	PDF only: duplicate a page

	Document.get_layer()
	PDF only: lists of OCGs in ON, OFF, RBGroups

	Document.get_layers()
	PDF only: list of optional content configurations

	Document.get_oc()
	PDF only: get OCG /OCMD xref of image / form xobject

	Document.get_ocgs()
	PDF only: info on all optional content groups

	Document.get_ocmd()
	PDF only: retrieve definition of an OCMD

	Document.get_page_fonts()
	PDF only: list of fonts referenced by a page

	Document.get_page_images()
	PDF only: list of images referenced by a page

	Document.get_page_labels()
	PDF only: list of page label definitions

	Document.get_page_numbers()
	PDF only: get page numbers having a given label

	Document.get_page_pixmap()
	create a pixmap of a page by page number

	Document.get_page_text()
	extract the text of a page by page number

	Document.get_page_xobjects()
	PDF only: list of XObjects referenced by a page

	Document.get_sigflags()
	PDF only: determine signature state

	Document.get_toc()
	extract the table of contents

	Document.get_xml_metadata()
	PDF only: read the XML metadata

	Document.has_annots()
	PDF only: check if PDF contains any annots

	Document.has_links()
	PDF only: check if PDF contains any links

	Document.insert_page()
	PDF only: insert a new page

	Document.insert_pdf()
	PDF only: insert pages from another PDF

	Document.insert_file()
	PDF only: insert pages from arbitrary document

	Document.journal_can_do()
	PDF only: which journal actions are possible

	Document.journal_enable()
	PDF only: enables journalling for the document

	Document.journal_load()
	PDF only: load journal from a file

	Document.journal_op_name()
	PDF only: return name of a journalling step

	Document.journal_position()
	PDF only: return journalling status

	Document.journal_redo()
	PDF only: redo current operation

	Document.journal_save()
	PDF only: save journal to a file

	Document.journal_start_op()
	PDF only: start an “operation” giving it a name

	Document.journal_stop_op()
	PDF only: end current operation

	Document.journal_undo()
	PDF only: undo current operation

	Document.layer_ui_configs()
	PDF only: list of optional content intents

	Document.layout()
	re-paginate the document (if supported)

	Document.load_page()
	read a page

	Document.make_bookmark()
	create a page pointer in reflowable documents

	Document.move_page()
	PDF only: move a page to different location in doc

	Document.need_appearances()
	PDF only: get/set /NeedAppearances property

	Document.new_page()
	PDF only: insert a new empty page

	Document.next_location()
	return (chapter, pno) of following page

	Document.outline_xref()
	PDF only: xref a TOC item

	Document.page_cropbox()
	PDF only: the unrotated page rectangle

	Document.page_xref()
	PDF only: xref of a page number

	Document.pages()
	iterator over a page range

	Document.pdf_catalog()
	PDF only: xref of catalog (root)

	Document.pdf_trailer()
	PDF only: trailer source

	Document.prev_location()
	return (chapter, pno) of preceding page

	Document.reload_page()
	PDF only: provide a new copy of a page

	Document.resolve_names()
	PDF only: Convert destination names into a Python dict

	Document.save()
	PDF only: save the document

	Document.saveIncr()
	PDF only: save the document incrementally

	Document.scrub()
	PDF only: remove sensitive data

	Document.search_page_for()
	search for a string on a page

	Document.select()
	PDF only: select a subset of pages

	Document.set_layer_ui_config()
	PDF only: set OCG visibility temporarily

	Document.set_layer()
	PDF only: mass changing OCG states

	Document.set_markinfo()
	PDF only: set the MarkInfo values

	Document.set_metadata()
	PDF only: set the metadata

	Document.set_oc()
	PDF only: attach OCG/OCMD to image / form xobject

	Document.set_ocmd()
	PDF only: create or update an OCMD

	Document.set_page_labels()
	PDF only: add/update page label definitions

	Document.set_pagemode()
	PDF only: set the PageMode

	Document.set_pagelayout()
	PDF only: set the PageLayout

	Document.set_toc_item()
	PDF only: change a single TOC item

	Document.set_toc()
	PDF only: set the table of contents (TOC)

	Document.set_xml_metadata()
	PDF only: create or update document XML metadata

	Document.subset_fonts()
	PDF only: create font subsets

	Document.switch_layer()
	PDF only: activate OC configuration

	Document.tobytes()
	PDF only: writes document to memory

	Document.xref_copy()
	PDF only: copy a PDF dictionary to another xref

	Document.xref_get_key()
	PDF only: get the value of a dictionary key

	Document.xref_get_keys()
	PDF only: list the keys of object at xref

	Document.xref_object()
	PDF only: get the definition source of xref

	Document.xref_set_key()
	PDF only: set the value of a dictionary key

	Document.xref_stream_raw()
	PDF only: raw stream source at xref

	Document.xref_xml_metadata()
	PDF only: xref of XML metadata

	Document.chapter_count
	number of chapters

	Document.FormFonts
	PDF only: list of global widget fonts

	Document.is_closed
	has document been closed?

	Document.is_dirty
	PDF only: has document been changed yet?

	Document.is_encrypted
	document (still) encrypted?

	Document.is_fast_webaccess
	is PDF linearized?

	Document.is_form_pdf
	is this a Form PDF?

	Document.is_pdf
	is this a PDF?

	Document.is_reflowable
	is this a reflowable document?

	Document.is_repaired
	PDF only: has this PDF been repaired during open?

	Document.last_location
	(chapter, pno) of last page

	Document.metadata
	metadata

	Document.markinfo
	PDF MarkInfo value

	Document.name
	filename of document

	Document.needs_pass
	require password to access data?

	Document.outline
	first Outline item

	Document.page_count
	number of pages

	Document.permissions
	permissions to access the document

	Document.pagemode
	PDF PageMode value

	Document.pagelayout
	PDF PageLayout value

	Document.version_count
	PDF count of versions

Class API

	
class Document#
	
	
__init__(self, filename=None, stream=None, *, filetype=None, rect=None, width=0, height=0, fontsize=11)#
		Changed in v1.14.13: support io.BytesIO for memory documents.

	Changed in v1.19.6: Clearer, shorter and more consistent exception messages. File type “pdf” is always assumed if not specified. Empty files and memory areas will always lead to exceptions.

Creates a Document object.

	With default parameters, a new empty PDF document will be created.

	If stream is given, then the document is created from memory and, if not a PDF, either filename or filetype must indicate its type.

	If stream is None, then a document is created from the file given by filename. Its type is inferred from the extension. This can be overruled by filetype.

	Parameters:
		filename (str,pathlib) – A UTF-8 string or pathlib object containing a file path. The document type is inferred from the filename extension. If not present or not matching a supported type, a PDF document is assumed. For memory documents, this argument may be used instead of filetype, see below.

	stream (bytes,bytearray,BytesIO) – A memory area containing a supported document. If not a PDF, its type must be specified by either filename or filetype.

	filetype (str) – A string specifying the type of document. This may be anything looking like a filename (e.g. “x.pdf”), in which case MuPDF uses the extension to determine the type, or a mime type like application/pdf. Just using strings like “pdf” or “.pdf” will also work. May be omitted for PDF documents, otherwise must match a supported document type.

	rect (rect_like) – a rectangle specifying the desired page size. This parameter is only meaningful for documents with a variable page layout (“reflowable” documents), like e-books or HTML, and ignored otherwise. If specified, it must be a non-empty, finite rectangle with top-left coordinates (0, 0). Together with parameter fontsize, each page will be accordingly laid out and hence also determine the number of pages.

	width (float) – may used together with height as an alternative to rect to specify layout information.

	height (float) – may used together with width as an alternative to rect to specify layout information.

	fontsize (float) – the default fontsize for reflowable document types. This parameter is ignored if none of the parameters rect or width and height are specified. Will be used to calculate the page layout.

	Raises:
		TypeError – if the type of any parameter does not conform.

	FileNotFoundError – if the file / path cannot be found. Re-implemented as subclass of RuntimeError.

	EmptyFileError – if the file / path is empty or the bytes object in memory has zero length. A subclass of FileDataError and RuntimeError.

	ValueError – if an unknown file type is explicitly specified.

	FileDataError – if the document has an invalid structure for the given type – or is no file at all (but e.g. a folder). A subclass of RuntimeError.

	Returns:
	
A document object. If the document cannot be created, an exception is raised in the above sequence. Note that PyMuPDF-specific exceptions, FileNotFoundError, EmptyFileError and FileDataError are intercepted if you check for RuntimeError.

In case of problems you can see more detail in the internal messages store: print(fitz.TOOLS.mupdf_warnings()) (which will be emptied by this call, but you can also prevent this – consult Tools.mupdf_warnings()).

Note

Not all document types are checked for valid formats already at open time. Raster images for example will raise exceptions only later, when trying to access the content. Other types (notably with non-binary content) may also be opened (and sometimes accessed) successfully – sometimes even when having invalid content for the format:

	HTM, HTML, XHTML: always opened, metadata["format"] is “HTML5”, resp. “XHTML”.

	XML, FB2: always opened, metadata["format"] is “FictionBook2”.

Overview of possible forms, note: open is a synonym of Document:

>>> # from a file
>>> doc = fitz.open("some.xps")
>>> # handle wrong extension
>>> doc = fitz.open("some.file", filetype="xps")
>>>
>>> # from memory, filetype is required if not a PDF
>>> doc = fitz.open("xps", mem_area)
>>> doc = fitz.open(None, mem_area, "xps")
>>> doc = fitz.open(stream=mem_area, filetype="xps")
>>>
>>> # new empty PDF
>>> doc = fitz.open()
>>> doc = fitz.open(None)
>>> doc = fitz.open("")

Note

Raster images with a wrong (but supported) file extension are no problem. MuPDF will determine the correct image type when file content is actually accessed and will process it without complaint. So fitz.open("file.jpg") will work even for a PNG image.

The Document class can be also be used as a context manager. On exit, the document will automatically be closed.

>>> import fitz
>>> with fitz.open(...) as doc:
 for page in doc: print("page %i" % page.number)
page 0
page 1
page 2
page 3
>>> doc.is_closed
True
>>>

	
get_oc(xref)#
		New in v1.18.4

Return the cross reference number of an OCG or OCMD attached to an image or form xobject.

	Parameters:
	xref (int) – the xref of an image or form xobject. Valid such cross reference numbers are returned by Document.get_page_images(), resp. Document.get_page_xobjects(). For invalid numbers, an exception is raised.

	Return type:
	int

	Returns:
	the cross reference number of an optional contents object or zero if there is none.

	
set_oc(xref, ocxref)#
		New in v1.18.4

If xref represents an image or form xobject, set or remove the cross reference number ocxref of an optional contents object.

	Parameters:
		xref (int) – the xref of an image or form xobject [5]. Valid such cross reference numbers are returned by Document.get_page_images(), resp. Document.get_page_xobjects(). For invalid numbers, an exception is raised.

	ocxref (int) – the xref number of an OCG / OCMD. If not zero, an invalid reference raises an exception. If zero, any OC reference is removed.

	
get_layers()#
		New in v1.18.3

Show optional layer configurations. There always is a standard one, which is not included in the response.

>>> for item in doc.get_layers(): print(item)
{'number': 0, 'name': 'my-config', 'creator': ''}
>>> # use 'number' as config identifier in add_ocg

	
add_layer(name, creator=None, on=None)#
		New in v1.18.3

Add an optional content configuration. Layers serve as a collection of ON / OFF states for optional content groups and allow fast visibility switches between different views on the same document.

	Parameters:
		name (str) – arbitrary name.

	creator (str) – (optional) creating software.

	on (sequ) – a sequence of OCG xref numbers which should be set to ON when this layer gets activated. All OCGs not listed here will be set to OFF.

	
switch_layer(number, as_default=False)#
		New in v1.18.3

Switch to a document view as defined by the optional layer’s configuration number. This is temporary, except if established as default.

	Parameters:
		number (int) – config number as returned by Document.layer_configs().

	as_default (bool) – make this the default configuration.

Activates the ON / OFF states of OCGs as defined in the identified layer. If as_default=True, then additionally all layers, including the standard one, are merged and the result is written back to the standard layer, and all optional layers are deleted.

	
add_ocg(name, config=-1, on=True, intent='View', usage='Artwork')#
		New in v1.18.3

Add an optional content group. An OCG is the most important unit of information to determine object visibility. For a PDF, in order to be regarded as having optional content, at least one OCG must exist.

	Parameters:
		name (str) – arbitrary name. Will show up in supporting PDF viewers.

	config (int) – layer configuration number. Default -1 is the standard configuration.

	on (bool) – standard visibility status for objects pointing to this OCG.

	intent (str,list) – a string or list of strings declaring the visibility intents. There are two PDF standard values to choose from: “View” and “Design”. Default is “View”. Correct spelling is important.

	usage (str) – another influencer for OCG visibility. This will become part of the OCG’s /Usage key. There are two PDF standard values to choose from: “Artwork” and “Technical”. Default is “Artwork”. Please only change when required.

	Returns:
	xref of the created OCG. Use as entry for oc parameter in supporting objects.

Note

Multiple OCGs with identical parameters may be created. This will not cause problems. Garbage option 3 of Document.save() will get rid of any duplicates.

	
set_ocmd(xref=0, ocgs=None, policy='AnyOn', ve=None)#
		New in v1.18.4

Create or update an OCMD, Optional Content Membership Dictionary.

	Parameters:
		xref (int) – xref of the OCMD to be updated, or 0 for a new OCMD.

	ocgs (list) – a sequence of xref numbers of existing OCG PDF objects.

	policy (str) – one of “AnyOn” (default), “AnyOff”, “AllOn”, “AllOff” (mixed or lower case).

	ve (list) – a “visibility expression”. This is a list of arbitrarily nested other lists – see explanation below. Use as an alternative to the combination ocgs / policy if you need to formulate more complex conditions.

	Return type:
	int

	Returns:
	xref of the OCMD. Use as oc=xref parameter in supporting objects, and respectively in Document.set_oc() or Annot.set_oc().

Note

Like an OCG, an OCMD has a visibility state ON or OFF, and it can be used like an OCG. In contrast to an OCG, the OCMD state is determined by evaluating the state of one or more OCGs via special forms of boolean expressions. If the expression evaluates to true, the OCMD state is ON and OFF for false.

There are two ways to formulate OCMD visibility:

	Use the combination of ocgs and policy: The policy value is interpreted as follows:

	AnyOn – (default) true if at least one OCG is ON.

	AnyOff – true if at least one OCG is OFF.

	AllOn – true if all OCGs are ON.

	AllOff – true if all OCGs are OFF.

Suppose you want two PDF objects be displayed exactly one at a time (if one is ON, then the other one must be OFF):

Solution: use an OCG for object 1 and an OCMD for object 2. Create the OCMD via set_ocmd(ocgs=[xref], policy="AllOff"), with the xref of the OCG.

	Use the visibility expression ve: This is a list of two or more items. The first item is a logical keyword: one of the strings “and”, “or”, or “not”. The second and all subsequent items must either be an integer or another list. An integer must be the xref number of an OCG. A list must again have at least two items starting with one of the boolean keywords. This syntax is a bit awkward, but quite powerful:

	Each list must start with a logical keyword.

	If the keyword is a “not”, then the list must have exactly two items. If it is “and” or “or”, any number of other items may follow.

	Items following the logical keyword may be either integers or again a list. An integer must be the xref of an OCG. A list must conform to the previous rules.

Examples:

	set_ocmd(ve=["or", 4, ["not", 5], ["and", 6, 7]]). This delivers ON if the following is true: “4 is ON, or 5 is OFF, or 6 and 7 are both ON”.

	set_ocmd(ve=["not", xref]). This has the same effect as the OCMD example created under 1.

For more details and examples see page 224 of Adobe PDF References. Also do have a look at example scripts here.

Visibility expressions, /VE, are part of PDF specification version 1.6. So not all PDF viewers / readers may already support this feature and hence will react in some standard way for those cases.

	
get_ocmd(xref)#
		New in v1.18.4

Retrieve the definition of an OCMD.

	Parameters:
	xref (int) – the xref of the OCMD.

	Return type:
	dict

	Returns:
	a dictionary with the keys xref, ocgs, policy and ve.

	
get_layer(config=-1)#
		New in v1.18.3

List of optional content groups by status in the specified configuration. This is a dictionary with lists of cross reference numbers for OCGs that occur in the arrays /ON, /OFF or in some radio button group (/RBGroups).

	Parameters:
	config (int) – the configuration layer (default is the standard config layer).

>>> pprint(doc.get_layer())
{'off': [8, 9, 10], 'on': [5, 6, 7], 'rbgroups': [[7, 10]]}
>>>

	
set_layer(config, *, on=None, off=None, basestate=None, rbgroups=None, locked=None)#
		New in v1.18.3

	Changed in v1.22.5: Support list of locked OCGs.

Mass status changes of optional content groups. Permanently sets the status of OCGs.

	Parameters:
		config (int) – desired configuration layer, choose -1 for the default one.

	on (list) – list of xref of OCGs to set ON. Replaces previous values. An empty list will cause no OCG being set to ON anymore. Should be specified if basestate="ON" is used.

	off (list) – list of xref of OCGs to set OFF. Replaces previous values. An empty list will cause no OCG being set to OFF anymore. Should be specified if basestate="OFF" is used.

	basestate (str) – state of OCGs that are not mentioned in on or off. Possible values are “ON”, “OFF” or “Unchanged”. Upper / lower case possible.

	rbgroups (list) – a list of lists. Replaces previous values. Each sublist should contain two or more OCG xrefs. OCGs in the same sublist are handled like buttons in a radio button group: setting one to ON automatically sets all other group members to OFF.

	locked (list) – a list of OCG xref number that cannot be changed by the user interface.

Values None will not change the corresponding PDF array.

>>> doc.set_layer(-1, basestate="OFF") # only changes the base state
>>> pprint(doc.get_layer())
{'basestate': 'OFF', 'off': [8, 9, 10], 'on': [5, 6, 7], 'rbgroups': [[7, 10]]}

	
get_ocgs()#
		New in v1.18.3

Details of all optional content groups. This is a dictionary of dictionaries like this (key is the OCG’s xref):

>>> pprint(doc.get_ocgs())
{13: {'on': True,
 'intent': ['View', 'Design'],
 'name': 'Circle',
 'usage': 'Artwork'},
14: {'on': True,
 'intent': ['View', 'Design'],
 'name': 'Square',
 'usage': 'Artwork'},
15: {'on': False, 'intent': ['View'], 'name': 'Square', 'usage': 'Artwork'}}
>>>

	
layer_ui_configs()#
		New in v1.18.3

Show the visibility status of optional content that is modifiable by the user interface of supporting PDF viewers.

	Only reports items contained in the currently selected layer configuration.

		The meaning of the dictionary keys is as follows:
		depth: item’s nesting level in the /Order array

	locked: true if cannot be changed via user interfaces

	number: running sequence number

	on: item state

	text: text string or name field of the originating OCG

	type: one of “label” (set by a text string), “checkbox” (set by a single OCG) or “radiobox” (set by a set of connected OCGs)

	
set_layer_ui_config(number, action=0)#
		New in v1.18.3

Modify OC visibility status of content groups. This is analog to what supporting PDF viewers would offer.

Please note that visibility is not a property stored with the OCG. It is not even information necessarily present in the PDF document at all. Instead, the current visibility is temporarily set using the user interface of some supporting PDF consumer software. The same type of functionality is offered by this method.

To make permanent changes, use Document.set_layer().

	Parameters:
		number (int,str) – either the sequence number of the item in list Document.layer_configs() or the “text” of one of these items.

	action (int) – PDF_OC_ON = set on (default), PDF_OC_TOGGLE = toggle on/off, PDF_OC_OFF = set off.

	
authenticate(password)#
	Decrypts the document with the string password. If successful, document data can be accessed. For PDF documents, the “owner” and the “user” have different privileges, and hence different passwords may exist for these authorization levels. The method will automatically establish the appropriate (owner or user) access rights for the provided password.

	Parameters:
	password (str) – owner or user password.

	Return type:
	int

	Returns:
	
a positive value if successful, zero otherwise (the string does not match either password). If positive, the indicator Document.is_encrypted is set to False. Positive return codes carry the following information detail:

	1 => authenticated, but the PDF has neither owner nor user passwords.

	2 => authenticated with the user password.

	4 => authenticated with the owner password.

	6 => authenticated and both passwords are equal – probably a rare situation.

Note

The document may be protected by an owner, but not by a user password. Detect this situation via doc.authenticate("") == 2. This allows opening and reading the document without authentication, but, depending on the Document.permissions value, other actions may be prohibited. PyMuPDF (like MuPDF) in this case ignores those restrictions. So, – in contrast to any PDF viewers – you can for example extract text and add or modify content, even if the respective permission flags PDF_PERM_COPY, PDF_PERM_MODIFY, PDF_PERM_ANNOTATE, etc. are set off! It is your responsibility building a legally compliant application where applicable.

	
get_page_numbers(label, only_one=False)#
		New in v 1.18.6

PDF only: Return a list of page numbers that have the specified label – note that labels may not be unique in a PDF. This implies a sequential search through all page numbers to compare their labels.

Note

Implementation detail – pages are not loaded for this purpose.

	Parameters:
		label (str) – the label to look for, e.g. “vii” (Roman number 7).

	only_one (bool) – stop after first hit. Useful e.g. if labelling is known to be unique, or there are many pages, etc. The default will check every page number.

	Return type:
	list

	Returns:
	list of page numbers that have this label. Empty if none found, no labels defined, etc.

	
get_page_labels()#
		New in v1.18.7

PDF only: Extract the list of page label definitions. Typically used for modifications before feeding it into Document.set_page_labels().

	Returns:
	a list of dictionaries as defined in Document.set_page_labels().

	
set_page_labels(labels)#
		New in v1.18.6

PDF only: Add or update the page label definitions of the PDF.

	Parameters:
	labels (list) –
a list of dictionaries. Each dictionary defines a label building rule and a 0-based “start” page number. That start page is the first for which the label definition is valid. Each dictionary has up to 4 items and looks like {'startpage': int, 'prefix': str, 'style': str, 'firstpagenum': int} and has the following items.

	startpage: (int) the first page number (0-based) to apply the label rule. This key must be present. The rule is applied to all subsequent pages until either end of document or superseded by the rule with the next larger page number.

	prefix: (str) an arbitrary string to start the label with, e.g. “A-”. Default is “”.

	style: (str) the numbering style. Available are “D” (decimal), “r”/”R” (Roman numbers, lower / upper case), and “a”/”A” (lower / upper case alphabetical numbering: “a” through “z”, then “aa” through “zz”, etc.). Default is “”. If “”, no numbering will take place and the pages in that range will receive the same label consisting of the prefix value. If prefix is also omitted, then the label will be “”.

	firstpagenum: (int) start numbering with this value. Default is 1, smaller values are ignored.

For example:

[{'startpage': 6, 'prefix': 'A-', 'style': 'D', 'firstpagenum': 10},
 {'startpage': 10, 'prefix': '', 'style': 'D', 'firstpagenum': 1}]

will generate the labels “A-10”, “A-11”, “A-12”, “A-13”, “1”, “2”, “3”, … for pages 6, 7 and so on until end of document. Pages 0 through 5 will have the label “”.

	
make_bookmark(loc)#
		New in v.1.17.3

Return a page pointer in a reflowable document. After re-layouting the document, the result of this method can be used to find the new location of the page.

Note

Do not confuse with items of a table of contents, TOC.

	Parameters:
	loc (list,tuple) – page location. Must be a valid (chapter, pno).

	Return type:
	pointer

	Returns:
	a long integer in pointer format. To be used for finding the new location of the page after re-layouting the document. Do not touch or re-assign.

	
find_bookmark(bookmark)#
		New in v.1.17.3

Return the new page location after re-layouting the document.

	Parameters:
	bookmark (pointer) – created by Document.make_bookmark().

	Return type:
	tuple

	Returns:
	the new (chapter, pno) of the page.

	
chapter_page_count(chapter)#
		New in v.1.17.0

Return the number of pages of a chapter.

	Parameters:
	chapter (int) – the 0-based chapter number.

	Return type:
	int

	Returns:
	number of pages in chapter. Relevant only for document types with chapter support (EPUB currently).

	
next_location(page_id)#
		New in v.1.17.0

Return the location of the following page.

	Parameters:
	page_id (tuple) – the current page id. This must be a tuple (chapter, pno) identifying an existing page.

	Returns:
	The tuple of the following page, i.e. either (chapter, pno + 1) or (chapter + 1, 0), or the empty tuple () if the argument was the last page. Relevant only for document types with chapter support (EPUB currently).

	
prev_location(page_id)#
		New in v.1.17.0

Return the locator of the preceding page.

	Parameters:
	page_id (tuple) – the current page id. This must be a tuple (chapter, pno) identifying an existing page.

	Returns:
	The tuple of the preceding page, i.e. either (chapter, pno - 1) or the last page of the preceding chapter, or the empty tuple () if the argument was the first page. Relevant only for document types with chapter support (EPUB currently).

	
load_page(page_id=0)#
		Changed in v1.17.0: For document types supporting a so-called “chapter structure” (like EPUB), pages can also be loaded via the combination of chapter number and relative page number, instead of the absolute page number. This should significantly speed up access for large documents.

Create a Page object for further processing (like rendering, text searching, etc.).

	Parameters:
	page_id (int,tuple) –
(Changed in v1.17.0)

Either a 0-based page number, or a tuple (chapter, pno). For an integer, any -∞ < page_id < page_count is acceptable. While page_id is negative, page_count will be added to it. For example: to load the last page, you can use doc.load_page(-1). After this you have page.number = doc.page_count - 1.

For a tuple, chapter must be in range Document.chapter_count, and pno must be in range Document.chapter_page_count() of that chapter. Both values are 0-based. Using this notation, Page.number will equal the given tuple. Relevant only for document types with chapter support (EPUB currently).

	Return type:
	Page

Note

Documents also follow the Python sequence protocol with page numbers as indices: doc.load_page(n) == doc[n].

For absolute page numbers only, expressions like “for page in doc: …” and “for page in reversed(doc): …” will successively yield the document’s pages. Refer to Document.pages() which allows processing pages as with slicing.

You can also use index notation with the new chapter-based page identification: use page = doc[(5, 2)] to load the third page of the sixth chapter.

To maintain a consistent API, for document types not supporting a chapter structure (like PDFs), Document.chapter_count is 1, and pages can also be loaded via tuples (0, pno). See this [3] footnote for comments on performance improvements.

	
reload_page(page)#
		New in v1.16.10

PDF only: Provide a new copy of a page after finishing and updating all pending changes.

	Parameters:
	page (Page) – page object.

	Return type:
	Page

	Returns:
	
a new copy of the same page. All pending updates (e.g. to annotations or widgets) will be finalized and a fresh copy of the page will be loaded.

Note

In a typical use case, a page Pixmap should be taken after annotations / widgets have been added or changed. To force all those changes being reflected in the page structure, this method re-instates a fresh copy while keeping the object hierarchy “document -> page -> annotations/widgets” intact.

	
resolve_names()#
	PDF only: Convert destination names into a Python dict.

Only available in PyMuPDF’s “rebased” implementation.

	Returns:
	
A dictionary with the following layout:

	key: (str) the name.

		value: (dict) with the following layout:
		”page”: target page number (0-based). If no page number found -1.

	”to”: (x, y) target point on page. Currently in PDF coordinates,
i.e. point (0,0) is the bottom-left of the page.

	”zoom”: (float) the zoom factor.

	”dest”: (str) only present if the target location on the page has
not been provided as “/XYZ” or if no page number was found.

Examples:

{
 '__bookmark_1': {'page': 0, 'to': (0.0, 541.0), 'zoom': 0.0},
 '__bookmark_2': {'page': 0, 'to': (0.0, 481.45), 'zoom': 0.0},
}

or:

{
 '21154a7c20684ceb91f9c9adc3b677c40': {'page': -1, 'dest': '/XYZ 15.75 1486 0'},
 ...
}

All names found in the catalog under keys “/Dests” and “/Names/Dests” are
included.

	New in v1.23.6

	
page_cropbox(pno)#
		New in v1.17.7

PDF only: Return the unrotated page rectangle – without loading the page (via Document.load_page()). This is meant for internal purpose requiring best possible performance.

	Parameters:
	pno (int) – 0-based page number.

	Returns:
	Rect of the page like Page.rect(), but ignoring any rotation.

	
page_xref(pno)#
		New in v1.17.7

PDF only: Return the xref of the page – without loading the page (via Document.load_page()). This is meant for internal purpose requiring best possible performance.

	Parameters:
	pno (int) – 0-based page number.

	Returns:
	xref of the page like Page.xref.

	
pages(start=None[, stop=None[, step=None]])#
		New in v1.16.4

A generator for a range of pages. Parameters have the same meaning as in the built-in function range(). Intended for expressions of the form “for page in doc.pages(start, stop, step): …”.

	Parameters:
		start (int) – start iteration with this page number. Default is zero, allowed values are -∞ < start < page_count. While this is negative, page_count is added before starting the iteration.

	stop (int) – stop iteration at this page number. Default is page_count, possible are -∞ < stop <= page_count. Larger values are silently replaced by the default. Negative values will cyclically emit the pages in reversed order. As with the built-in range(), this is the first page not returned.

	step (int) – stepping value. Defaults are 1 if start < stop and -1 if start > stop. Zero is not allowed.

	Returns:
	
a generator iterator over the document’s pages. Some examples:

	”doc.pages()” emits all pages.

	”doc.pages(4, 9, 2)” emits pages 4, 6, 8.

	”doc.pages(0, None, 2)” emits all pages with even numbers.

	”doc.pages(-2)” emits the last two pages.

	”doc.pages(-1, -1)” emits all pages in reversed order.

	”doc.pages(-1, -10)” always emits 10 pages in reversed order, starting with the last page – repeatedly if the document has less than 10 pages. So for a 4-page document the following page numbers are emitted: 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 0, 3.

	
convert_to_pdf(from_page=-1, to_page=-1, rotate=0)#
	Create a PDF version of the current document and write it to memory. All document types are supported. The parameters have the same meaning as in insert_pdf(). In essence, you can restrict the conversion to a page subset, specify page rotation, and revert page sequence.

	Parameters:
		from_page (int) – first page to copy (0-based). Default is first page.

	to_page (int) – last page to copy (0-based). Default is last page.

	rotate (int) – rotation angle. Default is 0 (no rotation). Should be n * 90 with an integer n (not checked).

	Return type:
	bytes

	Returns:
	
a Python bytes object containing a PDF file image. It is created by internally using tobytes(garbage=4, deflate=True). See tobytes(). You can output it directly to disk or open it as a PDF. Here are some examples:

>>> # convert an XPS file to PDF
>>> xps = fitz.open("some.xps")
>>> pdfbytes = xps.convert_to_pdf()
>>>
>>> # either do this -->
>>> pdf = fitz.open("pdf", pdfbytes)
>>> pdf.save("some.pdf")
>>>
>>> # or this -->
>>> pdfout = open("some.pdf", "wb")
>>> pdfout.tobytes(pdfbytes)
>>> pdfout.close()

>>> # copy image files to PDF pages
>>> # each page will have image dimensions
>>> doc = fitz.open() # new PDF
>>> imglist = [... image file names ...] # e.g. a directory listing
>>> for img in imglist:
 imgdoc=fitz.open(img) # open image as a document
 pdfbytes=imgdoc.convert_to_pdf() # make a 1-page PDF of it
 imgpdf=fitz.open("pdf", pdfbytes)
 doc.insert_pdf(imgpdf) # insert the image PDF
>>> doc.save("allmyimages.pdf")

Note

The method uses the same logic as the mutool convert CLI. This works very well in most cases – however, beware of the following limitations.

	Image files: perfect, no issues detected. However, image transparency is ignored. If you need that (like for a watermark), use Page.insert_image() instead. Otherwise, this method is recommended for its much better performance.

	XPS: appearance very good. Links work fine, outlines (bookmarks) are lost, but can easily be recovered [2].

	EPUB, CBZ, FB2: similar to XPS.

	SVG: medium. Roughly comparable to svglib.

	
get_toc(simple=True)#
	Creates a table of contents (TOC) out of the document’s outline chain.

	Parameters:
	simple (bool) – Indicates whether a simple or a detailed TOC is required. If False, each item of the list also contains a dictionary with linkDest details for each outline entry.

	Return type:
	list

	Returns:
	
a list of lists. Each entry has the form [lvl, title, page, dest]. Its entries have the following meanings:

	lvl – hierarchy level (positive int). The first entry is always 1. Entries in a row are either equal, increase by 1, or decrease by any number.

	title – title (str)

	page – 1-based source page number (int). -1 if no destination or outside document.

	dest – (dict) included only if simple=False. Contains details of the TOC item as follows:

	kind: destination kind, see Link Destination Kinds.

	file: filename if kind is LINK_GOTOR or LINK_LAUNCH.

	page: target page, 0-based, LINK_GOTOR or LINK_GOTO only.

	to: position on target page (Point).

	zoom: (float) zoom factor on target page.

	xref: xref of the item (0 if no PDF).

	color: item color in PDF RGB format (red, green, blue), or omitted (always omitted if no PDF).

	bold: true if bold item text or omitted. PDF only.

	italic: true if italic item text, or omitted. PDF only.

	collapse: true if sub-items are folded, or omitted. PDF only.

	nameddest: target name if kind=4. PDF only. (New in 1.23.7.)

	
xref_get_keys(xref)#
		New in v1.18.7

PDF only: Return the PDF dictionary keys of the dictionary object provided by its xref number.

	Parameters:
	xref (int) – the xref. (Changed in v1.18.10) Use -1 to access the special dictionary “PDF trailer”.

	Returns:
	
a tuple of dictionary keys present in object xref. Examples:

>>> from pprint import pprint
>>> import fitz
>>> doc=fitz.open("pymupdf.pdf")
>>> xref = doc.page_xref(0) # xref of page 0
>>> pprint(doc.xref_get_keys(xref)) # primary level keys of a page
('Type', 'Contents', 'Resources', 'MediaBox', 'Parent')
>>> pprint(doc.xref_get_keys(-1)) # primary level keys of the trailer
('Type', 'Index', 'Size', 'W', 'Root', 'Info', 'ID', 'Length', 'Filter')
>>>

	
xref_get_key(xref, key)#
		New in v1.18.7

PDF only: Return type and value of a PDF dictionary key of a dictionary object given by its xref.

	Parameters:
		xref (int) – the xref. Changed in v1.18.10: Use -1 to access the special dictionary “PDF trailer”.

	key (str) – the desired PDF key. Must exactly match (case-sensitive) one of the keys contained in Document.xref_get_keys().

	Return type:
	tuple

	Returns:
	A tuple (type, value) of strings, where type is one of “xref”, “array”, “dict”, “int”, “float”, “null”, “bool”, “name”, “string” or “unknown” (should not occur). Independent of “type”, the value of the key is always formatted as a string – see the following example – and (almost always) a faithful reflection of what is stored in the PDF. In most cases, the format of the value string also gives a clue about the key type:

	A “name” always starts with a “/” slash.

	An “xref” always ends with “ 0 R”.

	An “array” is always enclosed in “[…]” brackets.

	A “dict” is always enclosed in “<<…>>” brackets.

	A “bool”, resp. “null” always equal either “true”, “false”, resp. “null”.

	“float” and “int” are represented by their string format – and are thus not always distinguishable.

	A “string” is converted to UTF-8 and may therefore deviate from what is stored in the PDF. For example, the PDF key “Author” may have a value of “<FEFF004A006F0072006A00200058002E0020004D0063004B00690065>” in the file, but the method will return ('string', 'Jorj X. McKie').

>>> for key in doc.xref_get_keys(xref):
 print(key, "=" , doc.xref_get_key(xref, key))
Type = ('name', '/Page')
Contents = ('xref', '1297 0 R')
Resources = ('xref', '1296 0 R')
MediaBox = ('array', '[0 0 612 792]')
Parent = ('xref', '1301 0 R')
>>> #
>>> # Now same thing for the PDF trailer.
>>> # It has no xref, so -1 must be used instead.
>>> #
>>> for key in doc.xref_get_keys(-1):
 print(key, "=", doc.xref_get_key(-1, key))
Type = ('name', '/XRef')
Index = ('array', '[0 8802]')
Size = ('int', '8802')
W = ('array', '[1 3 1]')
Root = ('xref', '8799 0 R')
Info = ('xref', '8800 0 R')
ID = ('array', '[<DC9D56A6277EFFD82084E64F9441E18C><DC9D56A6277EFFD82084E64F9441E18C>]')
Length = ('int', '21111')
Filter = ('name', '/FlateDecode')
>>>

	
xref_set_key(xref, key, value)#
		New in v1.18.7, changed in v 1.18.13

	Changed in v1.19.4: remove a key “physically” if set to “null”.

PDF only: Set (add, update, delete) the value of a PDF key for the dictionary object given by its xref.

Caution

This is an expert function: if you do not know what you are doing, there is a high risk to render (parts of) the PDF unusable. Please do consult Adobe PDF References about object specification formats (page 18) and the structure of special dictionary types like page objects.

	Parameters:
		xref (int) – the xref. Changed in v1.18.13: To update the PDF trailer, specify -1.

	key (str) – the desired PDF key (without leading “/”). Must not be empty. Any valid PDF key – whether already present in the object (which will be overwritten) – or new. It is possible to use PDF path notation like "Resources/ExtGState" – which sets the value for key "/ExtGState" as a sub-object of "/Resources".

	value (str) – the value for the key. It must be a non-empty string and, depending on the desired PDF object type, the following rules must be observed. There is some syntax checking, but no type checking and no checking if it makes sense PDF-wise, i.e. no semantics checking. Upper / lower case is important!

	xref – must be provided as "nnn 0 R" with a valid xref number nnn of the PDF. The suffix “0 R” is required to be recognizable as an xref by PDF applications.

	array – a string like "[a b c d e f]". The brackets are required. Array items must be separated by at least one space (not commas like in Python). An empty array "[]" is possible and equivalent to removing the key. Array items may be any PDF objects, like dictionaries, xrefs, other arrays, etc. Like in Python, array items may be of different types.

	dict – a string like "<< ... >>". The brackets are required and must enclose a valid PDF dictionary definition. The empty dictionary "<<>>" is possible and equivalent to removing the key.

	int – an integer formatted as a string.

	float – a float formatted as a string. Scientific notation (with exponents) is not allowed by PDF.

	null – the string "null". This is the PDF equivalent to Python’s None and causes the key to be ignored – however not necessarily removed, resp. removed on saves with garbage collection. Changed in v1.19.4: If the key is no path hierarchy (i.e. contains no slash “/”), then it will be completely removed.

	bool – one of the strings "true" or "false".

	name – a valid PDF name with a leading slash like this: "/PageLayout". See page 16 of the Adobe PDF References.

	string – a valid PDF string. All PDF strings must be enclosed by brackets. Denote the empty string as "()". Depending on its content, the possible brackets are

	“(…)” for ASCII-only text. Reserved PDF characters must be backslash-escaped and non-ASCII characters must be provided as 3-digit backslash-escaped octals – including leading zeros. Example: 12 = 0x0C must be encoded as 014.

	“<…>” for hex-encoded text. Every character must be represented by two hex-digits (lower or upper case).

	If in doubt, we strongly recommend to use get_pdf_str()! This function automatically generates the right brackets, escapes, and overall format. It will for example do conversions like these:

>>> # because of the € symbol, the following yields UTF-16BE BOM
>>> fitz.get_pdf_str("Pay in $ or €.")
'<feff00500061007900200069006e002000240020006f0072002020ac002e>'
>>> # escapes for brackets and non-ASCII
>>> fitz.get_pdf_str("Prices in EUR (USD also accepted). Areas are in m².")
'(Prices in EUR \\(USD also accepted\\). Areas are in m\\262.)'

	
get_page_pixmap(pno: int, *, matrix: matrix_like = Identity, dpi=None, colorspace: Colorspace = csRGB, clip: rect_like = None, alpha: bool = False, annots: bool = True)#
	Creates a pixmap from page pno (zero-based). Invokes Page.get_pixmap().

All parameters except pno are keyword-only.

	Parameters:
	pno (int) – page number, 0-based in -∞ < pno < page_count.

	Return type:
	Pixmap

	
get_page_xobjects(pno)#
		New in v1.16.13

	Changed in v1.18.11

PDF only: Return a list of all XObjects referenced by a page.

	Parameters:
	pno (int) – page number, 0-based, -∞ < pno < page_count.

	Return type:
	list

	Returns:
	
a list of (non-image) XObjects. These objects typically represent pages embedded (not copied) from other PDFs. For example, Page.show_pdf_page() will create this type of object. An item of this list has the following layout: (xref, name, invoker, bbox), where

	xref (int) is the XObject’s xref.

	name (str) is the symbolic name to reference the XObject.

	invoker (int) the xref of the invoking XObject or zero if the page directly invokes it.

	bbox (Rect) the boundary box of the XObject’s location on the page in untransformed coordinates. To get actual, non-rotated page coordinates, multiply with the page’s transformation matrix Page.transformation_matrix. Changed in v.18.11: the bbox is now formatted as Rect.

	
get_page_images(pno, full=False)#
	PDF only: Return a list of all images (directly or indirectly) referenced by the page.

	Parameters:
		pno (int) – page number, 0-based, -∞ < pno < page_count.

	full (bool) – whether to also include the referencer’s xref (which is zero if this is the page).

	Return type:
	list

	Returns:
	
a list of images referenced by this page. Each item looks like

(xref, smask, width, height, bpc, colorspace, alt. colorspace, name, filter, referencer)

Where

	xref (int) is the image object number

	smask (int) is the object number of its soft-mask image

	width and height (ints) are the image dimensions

	bpc (int) denotes the number of bits per component (normally 8)

	colorspace (str) a string naming the colorspace (like DeviceRGB)

	alt. colorspace (str) is any alternate colorspace depending on the value of colorspace

	name (str) is the symbolic name by which the image is referenced

	filter (str) is the decode filter of the image (Adobe PDF References, pp. 22).

	referencer (int) the xref of the referencer. Zero if directly referenced by the page. Only present if full=True.

Note

In general, this is not the list of images that are actually displayed. This method only parses several PDF objects to collect references to embedded images. It does not analyse the page’s contents, where all the actual image display commands are defined. To get this information, please use Page.get_image_info(). Also have a look at the discussion in section Structure of Dictionary Outputs.

	
get_page_fonts(pno, full=False)#
	PDF only: Return a list of all fonts (directly or indirectly) referenced by the page.

	Parameters:
		pno (int) – page number, 0-based, -∞ < pno < page_count.

	full (bool) – whether to also include the referencer’s xref. If True, the returned items are one entry longer. Use this option if you need to know, whether the page directly references the font. In this case the last entry is 0. If the font is referenced by an /XObject of the page, you will find its xref here.

	Return type:
	list

	Returns:
	a list of fonts referenced by this page. Each entry looks like

(xref, ext, type, basefont, name, encoding, referencer),

where

	xref (int) is the font object number (may be zero if the PDF uses one of the builtin fonts directly)

	ext (str) font file extension (e.g. “ttf”, see Font File Extensions)

	type (str) is the font type (like “Type1” or “TrueType” etc.)

	basefont (str) is the base font name,

	name (str) is the symbolic name, by which the font is referenced

	encoding (str) the font’s character encoding if different from its built-in encoding (Adobe PDF References, p. 254):

	referencer (int optional) the xref of the referencer. Zero if directly referenced by the page, otherwise the xref of an XObject. Only present if full=True.

Example:

>>> pprint(doc.get_page_fonts(0, full=False))
[(12, 'ttf', 'TrueType', 'FNUUTH+Calibri-Bold', 'R8', ''),
 (13, 'ttf', 'TrueType', 'DOKBTG+Calibri', 'R10', ''),
 (14, 'ttf', 'TrueType', 'NOHSJV+Calibri-Light', 'R12', ''),
 (15, 'ttf', 'TrueType', 'NZNDCL+CourierNewPSMT', 'R14', ''),
 (16, 'ttf', 'Type0', 'MNCSJY+SymbolMT', 'R17', 'Identity-H'),
 (17, 'cff', 'Type1', 'UAEUYH+Helvetica', 'R20', 'WinAnsiEncoding'),
 (18, 'ttf', 'Type0', 'ECPLRU+Calibri', 'R23', 'Identity-H'),
 (19, 'ttf', 'Type0', 'TONAYT+CourierNewPSMT', 'R27', 'Identity-H')]

Note

	This list has no duplicate entries: the combination of xref, name and referencer is unique.

	In general, this is a superset of the fonts actually in use by this page. The PDF creator may e.g. have specified some global list, of which each page only makes partial use.

	
get_page_text(pno, output='text', flags=3, textpage=None, sort=False)#
	Extracts the text of a page given its page number pno (zero-based). Invokes Page.get_text().

	Parameters:
	pno (int) – page number, 0-based, any value -∞ < pno < page_count.

For other parameter refer to the page method.

	Return type:
	str

	
layout(rect=None, width=0, height=0, fontsize=11)#
	Re-paginate (“reflow”) the document based on the given page dimension and fontsize. This only affects some document types like e-books and HTML. Ignored if not supported. Supported documents have True in property is_reflowable.

	Parameters:
		rect (rect_like) – desired page size. Must be finite, not empty and start at point (0, 0).

	width (float) – use it together with height as alternative to rect.

	height (float) – use it together with width as alternative to rect.

	fontsize (float) – the desired default fontsize.

	
select(s)#
	PDF only: Keeps only those pages of the document whose numbers occur in the list. Empty sequences or elements outside range(doc.page_count) will cause a ValueError. For more details see remarks at the bottom or this chapter.

	Parameters:
	s (sequence) – The sequence (see Using Python Sequences as Arguments in PyMuPDF) of page numbers (zero-based) to be included. Pages not in the sequence will be deleted (from memory) and become unavailable until the document is reopened. Page numbers can occur multiple times and in any order: the resulting document will reflect the sequence exactly as specified.

Note

	Page numbers in the sequence need not be unique nor be in any particular order. This makes the method a versatile utility to e.g. select only the even or the odd pages or meeting some other criteria and so forth.

	On a technical level, the method will always create a new pagetree.

	When dealing with only a few pages, methods copy_page(), move_page(), delete_page() are easier to use. In fact, they are also much faster – by at least one order of magnitude when the document has many pages.

	
set_metadata(m)#
	PDF only: Sets or updates the metadata of the document as specified in m, a Python dictionary.

	Parameters:
	m (dict) – A dictionary with the same keys as metadata (see below). All keys are optional. A PDF’s format and encryption method cannot be set or changed and will be ignored. If any value should not contain data, do not specify its key or set the value to None. If you use {} all metadata information will be cleared to the string “none”. If you want to selectively change only some values, modify a copy of doc.metadata and use it as the argument. Arbitrary unicode values are possible if specified as UTF-8-encoded.

(Changed in v1.18.4) Empty values or “none” are no longer written, but completely omitted.

	
get_xml_metadata()#
	PDF only: Get the document XML metadata.

	Return type:
	str

	Returns:
	XML metadata of the document. Empty string if not present or not a PDF.

	
set_xml_metadata(xml)#
	PDF only: Sets or updates XML metadata of the document.

	Parameters:
	xml (str) – the new XML metadata. Should be XML syntax, however no checking is done by this method and any string is accepted.

	
set_pagelayout(value)#
		New in v1.22.2

PDF only: Set the /PageLayout.

	Parameters:
	value (str) – one of the strings “SinglePage”, “OneColumn”, “TwoColumnLeft”, “TwoColumnRight”, “TwoPageLeft”, “TwoPageRight”. Lower case is supported.

	
set_pagemode(value)#
		New in v1.22.2

PDF only: Set the /PageMode.

	Parameters:
	value (str) – one of the strings “UseNone”, “UseOutlines”, “UseThumbs”, “FullScreen”, “UseOC”, “UseAttachments”. Lower case is supported.

	
set_markinfo(value)#
		New in v1.22.2

PDF only: Set the /MarkInfo values.

	Parameters:
	value (dict) – a dictionary like this one: {"Marked": False, "UserProperties": False, "Suspects": False}. This dictionary contains information about the usage of Tagged PDF conventions. For details please see the PDF specifications.

	
set_toc(toc, collapse=1)#
	PDF only: Replaces the complete current outline tree (table of contents) with the one provided as the argument. After successful execution, the new outline tree can be accessed as usual via Document.get_toc() or via Document.outline. Like with other output-oriented methods, changes become permanent only via save() (incremental save supported). Internally, this method consists of the following two steps. For a demonstration see example below.

	Step 1 deletes all existing bookmarks.

	Step 2 creates a new TOC from the entries contained in toc.

	Parameters:
		toc (sequence) –
A list / tuple with all bookmark entries that should form the new table of contents. Output variants of get_toc() are acceptable. To completely remove the table of contents specify an empty sequence or None. Each item must be a list with the following format.

	[lvl, title, page [, dest]] where

	lvl is the hierarchy level (int > 0) of the item, which must be 1 for the first item and at most 1 larger than the previous one.

	title (str) is the title to be displayed. It is assumed to be UTF-8-encoded (relevant for multibyte code points only).

	page (int) is the target page number (attention: 1-based). Must be in valid range if positive. Set it to -1 if there is no target, or the target is external.

	dest (optional) is a dictionary or a number. If a number, it will be interpreted as the desired height (in points) this entry should point to on the page. Use a dictionary (like the one given as output by get_toc(False)) for a detailed control of the bookmark’s properties, see Document.get_toc() for a description.

	collapse (int) – (new in v1.16.9) controls the hierarchy level beyond which outline entries should initially show up collapsed. The default 1 will hence only display level 1, higher levels must be unfolded using the PDF viewer. To unfold everything, specify either a large integer, 0 or None.

	Return type:
	int

	Returns:
	the number of inserted, resp. deleted items.

Changed in v1.23.8: Destination ‘to’ coordinates should now be in the
same coordinate system as those returned by get_toc() (internally they
are now transformed with page.cropbox and page.rotation_matrix). So
for example set_toc(get_toc()) now gives unchanged destination ‘to’
coordinates.

	
outline_xref(idx)#
		New in v1.17.7

PDF only: Return the xref of the outline item. This is mainly used for internal purposes.

arg int idx: index of the item in list Document.get_toc().

	Returns:
	xref.

	
del_toc_item(idx)#
		New in v1.17.7

	Changed in v1.18.14: no longer remove the item’s text, but show it grayed-out.

PDF only: Remove this TOC item. This is a high-speed method, which disables the respective item, but leaves the overall TOC structure intact. Physically, the item still exists in the TOC tree, but is shown grayed-out and will no longer point to any destination.

This also implies that you can reassign the item to a new destination using Document.set_toc_item(), when required.

	Parameters:
	idx (int) – the index of the item in list Document.get_toc().

	
set_toc_item(idx, dest_dict=None, kind=None, pno=None, uri=None, title=None, to=None, filename=None, zoom=0)#
		New in v1.17.7

	Changed in v1.18.6

PDF only: Changes the TOC item identified by its index. Change the item title, destination, appearance (color, bold, italic) or collapsing sub-items – or to remove the item altogether.

Use this method if you need specific changes for selected entries only and want to avoid replacing the complete TOC. This is beneficial especially when dealing with large table of contents.

	Parameters:
		idx (int) – the index of the entry in the list created by Document.get_toc().

	dest_dict (dict) – the new destination. A dictionary like the last entry of an item in doc.get_toc(False). Using this as a template is recommended. When given, all other parameters are ignored – except title.

	kind (int) – the link kind, see Link Destination Kinds. If LINK_NONE, then all remaining parameter will be ignored, and the TOC item will be removed – same as Document.del_toc_item(). If None, then only the title is modified and the remaining parameters are ignored. All other values will lead to making a new destination dictionary using the subsequent arguments.

	pno (int) – the 1-based page number, i.e. a value 1 <= pno <= doc.page_count. Required for LINK_GOTO.

	uri (str) – the URL text. Required for LINK_URI.

	title (str) – the desired new title. None if no change.

	to (point_like) – (optional) points to a coordinate on the target page. Relevant for LINK_GOTO. If omitted, a point near the page’s top is chosen.

	filename (str) – required for LINK_GOTOR and LINK_LAUNCH.

	zoom (float) – use this zoom factor when showing the target page.

Example use: Change the TOC of the SWIG manual to achieve this:

Collapse everything below top level and show the chapter on Python support in red, bold and italic:

>>> import fitz
>>> doc=fitz.open("SWIGDocumentation.pdf")
>>> toc = doc.get_toc(False) # we need the detailed TOC
>>> # list of level 1 indices and their titles
>>> lvl1 = [(i, item[1]) for i, item in enumerate(toc) if item[0] == 1]
>>> for i, title in lvl1:
 d = toc[i][3] # get the destination dict
 d["collapse"] = True # collapse items underneath
 if "Python" in title: # show the 'Python' chapter
 d["color"] = (1, 0, 0) # in red,
 d["bold"] = True # bold and
 d["italic"] = True # italic
 doc.set_toc_item(i, dest_dict=d) # update this toc item
>>> doc.save("NEWSWIG.pdf",garbage=3,deflate=True)

In the previous example, we have changed only 42 of the 1240 TOC items of the file.

	
can_save_incrementally()#
		New in v1.16.0

Check whether the document can be saved incrementally. Use it to choose the right option without encountering exceptions.

	
scrub(attached_files=True, clean_pages=True, embedded_files=True, hidden_text=True, javascript=True, metadata=True, redactions=True, redact_images=0, remove_links=True, reset_fields=True, reset_responses=True, thumbnails=True, xml_metadata=True)#
		New in v1.16.14

PDF only: Remove potentially sensitive data from the PDF. This function is inspired by the similar “Sanitize” function in Adobe Acrobat products. The process is configurable by a number of options.

	Parameters:
		attached_files (bool) – Search for ‘FileAttachment’ annotations and remove the file content.

	clean_pages (bool) – Remove any comments from page painting sources. If this option is set to False, then this is also done for hidden_text and redactions.

	embedded_files (bool) – Remove embedded files.

	hidden_text (bool) – Remove OCRed text and invisible text [7].

	javascript (bool) – Remove JavaScript sources.

	metadata (bool) – Remove PDF standard metadata.

	redactions (bool) – Apply redaction annotations.

	redact_images (int) – how to handle images if applying redactions. One of 0 (ignore), 1 (blank out overlaps) or 2 (remove).

	remove_links (bool) – Remove all links.

	reset_fields (bool) – Reset all form fields to their defaults.

	reset_responses (bool) – Remove all responses from all annotations.

	thumbnails (bool) – Remove thumbnail images from pages.

	xml_metadata (bool) – Remove XML metadata.

	
save(outfile, garbage=0, clean=False, deflate=False, deflate_images=False, deflate_fonts=False, incremental=False, ascii=False, expand=0, linear=False, pretty=False, no_new_id=False, encryption=PDF_ENCRYPT_NONE, permissions=-1, owner_pw=None, user_pw=None)#
		Changed in v1.18.7

	Changed in v1.19.0

PDF only: Saves the document in its current state.

	Parameters:
		outfile (str,Path,fp) – The file path, pathlib.Path or file object to save to. A file object must have been created before via open(...) or io.BytesIO(). Choosing io.BytesIO() is similar to Document.tobytes() below, which equals the getvalue() output of an internally created io.BytesIO().

	garbage (int) –
Do garbage collection. Positive values exclude “incremental”.

	0 = none

	1 = remove unused (unreferenced) objects.

	2 = in addition to 1, compact the xref table.

	3 = in addition to 2, merge duplicate objects.

	4 = in addition to 3, check stream objects for duplication. This may be slow because such data are typically large.

	clean (bool) – Clean and sanitize content streams [1]. Corresponds to “mutool clean -sc”.

	deflate (bool) – Deflate (compress) uncompressed streams.

	deflate_images (bool) – (new in v1.18.3) Deflate (compress) uncompressed image streams [4].

	deflate_fonts (bool) – (new in v1.18.3) Deflate (compress) uncompressed fontfile streams [4].

	incremental (bool) – Only save changes to the PDF. Excludes “garbage” and “linear”. Can only be used if outfile is a string or a pathlib.Path and equal to Document.name. Cannot be used for files that are decrypted or repaired and also in some other cases. To be sure, check Document.can_save_incrementally(). If this is false, saving to a new file is required.

	ascii (bool) – convert binary data to ASCII.

	expand (int) –
Decompress objects. Generates versions that can be better read by some other programs and will lead to larger files.

	0 = none

	1 = images

	2 = fonts

	255 = all

	linear (bool) – Save a linearised version of the document. This option creates a file format for improved performance for Internet access. Excludes “incremental”.

	pretty (bool) – Prettify the document source for better readability. PDF objects will be reformatted to look like the default output of Document.xref_object().

	no_new_id (bool) – Suppress the update of the file’s /ID field. If the file happens to have no such field at all, also suppress creation of a new one. Default is False, so every save will lead to an updated file identification.

	permissions (int) – (new in v1.16.0) Set the desired permission levels. See Document Permissions for possible values. Default is granting all.

	encryption (int) – (new in v1.16.0) set the desired encryption method. See PDF encryption method codes for possible values.

	owner_pw (str) – (new in v1.16.0) set the document’s owner password. (Changed in v1.18.3) If not provided, the user password is taken if provided. The string length must not exceed 40 characters.

	user_pw (str) – (new in v1.16.0) set the document’s user password. The string length must not exceed 40 characters.

Note

The method does not check, whether a file of that name already exists, will hence not ask for confirmation, and overwrite the file. It is your responsibility as a programmer to handle this.

	
ez_save(*args, **kwargs)#
		New in v1.18.11

PDF only: The same as Document.save() but with the changed defaults deflate=True, garbage=3.

	
saveIncr()#
	PDF only: saves the document incrementally. This is a convenience abbreviation for doc.save(doc.name, incremental=True, encryption=PDF_ENCRYPT_KEEP).

Note

Saving incrementally may be required if the document contains verified signatures which would be invalidated by saving to a new file.

	
tobytes(garbage=0, clean=False, deflate=False, deflate_images=False, deflate_fonts=False, ascii=False, expand=0, linear=False, pretty=False, no_new_id=False, encryption=PDF_ENCRYPT_NONE, permissions=-1, owner_pw=None, user_pw=None)#
		Changed in v1.18.7

	Changed in v1.19.0

PDF only: Writes the current content of the document to a bytes object instead of to a file. Obviously, you should be wary about memory requirements. The meanings of the parameters exactly equal those in save(). Chapter FAQ contains an example for using this method as a pre-processor to pdfrw.

(Changed in v1.16.0) for extended encryption support.

	Return type:
	bytes

	Returns:
	a bytes object containing the complete document.

	
search_page_for(pno, text, quads=False)#
	Search for “text” on page number “pno”. Works exactly like the corresponding Page.search_for(). Any integer -∞ < pno < page_count is acceptable.

	
insert_pdf(docsrc, from_page=-1, to_page=-1, start_at=-1, rotate=-1, links=True, annots=True, show_progress=0, final=1)#
		Changed in v1.19.3 - as a fix to issue #537, form fields are always excluded.

PDF only: Copy the page range [from_page, to_page] (including both) of PDF document docsrc into the current one. Inserts will start with page number start_at. Value -1 indicates default values. All pages thus copied will be rotated as specified. Links and annotations can be excluded in the target, see below. All page numbers are 0-based.

	Parameters:
		docsrc (Document) – An opened PDF Document which must not be the current document. However, it may refer to the same underlying file.

	from_page (int) – First page number in docsrc. Default is zero.

	to_page (int) – Last page number in docsrc to copy. Defaults to last page.

	start_at (int) – First copied page, will become page number start_at in the target. Default -1 appends the page range to the end. If zero, the page range will be inserted before current first page.

	rotate (int) – All copied pages will be rotated by the provided value (degrees, integer multiple of 90).

	links (bool) – Choose whether (internal and external) links should be included in the copy. Default is True. Internal links to outside the copied page range are always excluded.

	annots (bool) – (new in v1.16.1) choose whether annotations should be included in the copy. (Fixed in v1.19.3) Form fields can never be copied.

	show_progress (int) – (new in v1.17.7) specify an interval size greater zero to see progress messages on sys.stdout. After each interval, a message like Inserted 30 of 47 pages. will be printed.

	final (int) – (new in v1.18.0) controls whether the list of already copied objects should be dropped after this method, default True. Set it to 0 except for the last one of multiple insertions from the same source PDF. This saves target file size and speeds up execution considerably.

Note

	If from_page > to_page, pages will be copied in reverse order. If 0 <= from_page == to_page, then one page will be copied.

	docsrc TOC entries will not be copied. It is easy however, to recover a table of contents for the resulting document. Look at the examples below and at program join.py in the examples directory: it can join PDF documents and at the same time piece together respective parts of the tables of contents.

	
insert_file(infile, from_page=-1, to_page=-1, start_at=-1, rotate=-1, links=True, annots=True, show_progress=0, final=1)#
		New in v1.22.0

PDF only: Add an arbitrary supported document to the current PDF. Opens “infile” as a document, converts it to a PDF and then invokes Document.insert_pdf(). Parameters are the same as for that method. Among other things, this features an easy way to append images as full pages to an output PDF.

	Parameters:
	infile (multiple) – the input document to insert. May be a filename specification as is valid for creating a Document or a Pixmap.

	
new_page(pno=-1, width=595, height=842)#
	PDF only: Insert an empty page.

	Parameters:
		pno (int) – page number in front of which the new page should be inserted. Must be in 1 < pno <= page_count. Special values -1 and doc.page_count insert after the last page.

	width (float) – page width.

	height (float) – page height.

	Return type:
	Page

	Returns:
	the created page object.

	
insert_page(pno, text=None, fontsize=11, width=595, height=842, fontname='helv', fontfile=None, color=None)#
	PDF only: Insert a new page and insert some text. Convenience function which combines Document.new_page() and (parts of) Page.insert_text().

	Parameters:
	pno (int) –
page number (0-based) in front of which to insert. Must be in range(-1, doc.page_count + 1). Special values -1 and doc.page_count insert after the last page.

	Changed in v1.14.12
	This is now a positional parameter

For the other parameters, please consult the aforementioned methods.

	Return type:
	int

	Returns:
	the result of Page.insert_text() (number of successfully inserted lines).

	
delete_page(pno=-1)#
	PDF only: Delete a page given by its 0-based number in -∞ < pno < page_count - 1.

	Changed in v1.18.14: support Python’s del statement.

	Parameters:
	pno (int) – the page to be deleted. Negative number count backwards from the end of the document (like with indices). Default is the last page.

	
delete_pages(*args, **kwds)#
		Changed in v1.18.13: more flexibility specifying pages to delete.

	Changed in v1.18.14: support Python’s del statement.

PDF only: Delete multiple pages given as 0-based numbers.

	Format 1: Use keywords. Represents the old format. A contiguous range of pages is removed.
		“from_page”: first page to delete. Zero if omitted.

	“to_page”: last page to delete. Last page in document if omitted. Must not be less then “from_page”.

Format 2: Two page numbers as positional parameters. Handled like Format 1.

Format 3: One positional integer parameter. Equivalent to Page.delete_page().

Format 4: One positional parameter of type list, tuple or range() of page numbers. The items of this sequence may be in any order and may contain duplicates.

Format 5: (New in v1.18.14) Using the Python del statement and index / slice notation is now possible.

Note

(Changed in v1.14.17, optimized in v1.17.7) In an effort to maintain a valid PDF structure, this method and delete_page() will also deactivate items in the table of contents which point to deleted pages. “Deactivation” here means, that the bookmark will point to nowhere and the title will be shown grayed-out by supporting PDF viewers. The overall TOC structure is left intact.

It will also remove any links on remaining pages which point to a deleted one. This action may have an extended response time for documents with many pages.

Following examples will all delete pages 500 through 519:

	doc.delete_pages(500, 519)

	doc.delete_pages(from_page=500, to_page=519)

	doc.delete_pages((500, 501, 502, ... , 519))

	doc.delete_pages(range(500, 520))

	del doc[500:520]

	del doc[(500, 501, 502, ... , 519)]

	del doc[range(500, 520)]

For the Adobe PDF References the above takes about 0.6 seconds, because the remaining 1290 pages must be cleaned from invalid links.

In general, the performance of this method is dependent on the number of remaining pages – not on the number of deleted pages: in the above example, deleting all pages except those 20, will need much less time.

	
copy_page(pno, to=-1)#
	PDF only: Copy a page reference within the document.

	Parameters:
		pno (int) – the page to be copied. Must be in range 0 <= pno < page_count.

	to (int) – the page number in front of which to copy. The default inserts after the last page.

Note

Only a new reference to the page object will be created – not a new page object, all copied pages will have identical attribute values, including the Page.xref. This implies that any changes to one of these copies will appear on all of them.

	
fullcopy_page(pno, to=-1)#
		New in v1.14.17

PDF only: Make a full copy (duplicate) of a page.

	Parameters:
		pno (int) – the page to be duplicated. Must be in range 0 <= pno < page_count.

	to (int) – the page number in front of which to copy. The default inserts after the last page.

Note

	In contrast to copy_page(), this method creates a new page object (with a new xref), which can be changed independently from the original.

	Any Popup and “IRT” (“in response to”) annotations are not copied to avoid potentially incorrect situations.

	
move_page(pno, to=-1)#
	PDF only: Move (copy and then delete original) a page within the document.

	Parameters:
		pno (int) – the page to be moved. Must be in range 0 <= pno < page_count.

	to (int) – the page number in front of which to insert the moved page. The default moves after the last page.

	
need_appearances(value=None)#
		New in v1.17.4

PDF only: Get or set the /NeedAppearances property of Form PDFs. Quote: “(Optional) A flag specifying whether to construct appearance streams and appearance dictionaries for all widget annotations in the document … Default value: false.” This may help controlling the behavior of some readers / viewers.

	Parameters:
	value (bool) – set the property to this value. If omitted or None, inquire the current value.

	Return type:
	bool

	Returns:
	
	None: not a Form PDF, or property not defined.

	True / False: the value of the property (either just set or existing for inquiries). Has no effect if no Form PDF.

	
get_sigflags()#
	PDF only: Return whether the document contains signature fields. This is an optional PDF property: if not present (return value -1), no conclusions can be drawn – the PDF creator may just not have bothered using it.

	Return type:
	int

	Returns:
	
	-1: not a Form PDF / no signature fields recorded / no SigFlags found.

	1: at least one signature field exists.

	3: contains signatures that may be invalidated if the file is saved (written) in a way that alters its previous contents, as opposed to an incremental update.

	
embfile_add(name, buffer, filename=None, ufilename=None, desc=None)#
		Changed in v1.14.16: The sequence of positional parameters “name” and “buffer” has been changed to comply with the call pattern of other functions.

PDF only: Embed a new file. All string parameters except the name may be unicode (in previous versions, only ASCII worked correctly). File contents will be compressed (where beneficial).

	Parameters:
		name (str) – entry identifier, must not already exist.

	buffer (bytes,bytearray,BytesIO) –
file contents.

(Changed in v1.14.13) io.BytesIO is now also supported.

	filename (str) – optional filename. Documentation only, will be set to name if None.

	ufilename (str) – optional unicode filename. Documentation only, will be set to filename if None.

	desc (str) – optional description. Documentation only, will be set to name if None.

	Return type:
	int

	Returns:
	(Changed in v1.18.13) The method now returns the xref of the inserted file. In addition, the file object now will be automatically given the PDF keys /CreationDate and /ModDate based on the current date-time.

	
embfile_count()#
		Changed in v1.14.16: This is now a method. In previous versions, this was a property.

PDF only: Return the number of embedded files.

	
embfile_get(item)#
	PDF only: Retrieve the content of embedded file by its entry number or name. If the document is not a PDF, or entry cannot be found, an exception is raised.

	Parameters:
	item (int,str) – index or name of entry. An integer must be in range(embfile_count()).

	Return type:
	bytes

	
embfile_del(item)#
		Changed in v1.14.16: Items can now be deleted by index, too.

PDF only: Remove an entry from /EmbeddedFiles. As always, physical deletion of the embedded file content (and file space regain) will occur only when the document is saved to a new file with a suitable garbage option.

	Parameters:
	item (int/str) – index or name of entry.

Warning

When specifying an entry name, this function will only delete the first item with that name. Be aware that PDFs not created with PyMuPDF may contain duplicate names. So you may want to take appropriate precautions.

	
embfile_info(item)#
		Changed in v1.18.13

PDF only: Retrieve information of an embedded file given by its number or by its name.

	Parameters:
	item (int/str) – index or name of entry. An integer must be in range(embfile_count()).

	Return type:
	dict

	Returns:
	
a dictionary with the following keys:

	name – (str) name under which this entry is stored

	filename – (str) filename

	ufilename – (unicode) filename

	desc – (str) description

	size – (int) original file size

	length – (int) compressed file length

	creationDate – (New in v1.18.13) (str) date-time of item creation in PDF format

	modDate – (New in v1.18.13) (str) date-time of last change in PDF format

	collection – (New in v1.18.13) (int) xref of the associated PDF portfolio item if any, else zero.

	checksum – (New in v1.18.13) (str) a hashcode of the stored file content as a hexadecimal string. Should be MD5 according to PDF specifications, but be prepared to see other hashing algorithms.

	
embfile_names()#
		New in v1.14.16

PDF only: Return a list of embedded file names. The sequence of the names equals the physical sequence in the document.

	Return type:
	list

	
embfile_upd(item, buffer=None, filename=None, ufilename=None, desc=None)#
	PDF only: Change an embedded file given its entry number or name. All parameters are optional. Letting them default leads to a no-operation.

	Parameters:
		item (int/str) – index or name of entry. An integer must be in range(embfile_count()).

	buffer (bytes,bytearray,BytesIO) –
the new file content.

(Changed in v1.14.13) io.BytesIO is now also supported.

	filename (str) – the new filename.

	ufilename (str) – the new unicode filename.

	desc (str) – the new description.

(Changed in v1.18.13) The method now returns the xref of the file object.

	Return type:
	int

	Returns:
	xref of the file object. Automatically, its /ModDate PDF key will be updated with the current date-time.

	
close()#
	Release objects and space allocations associated with the document. If created from a file, also closes filename (releasing control to the OS). Explicitly closing a document is equivalent to deleting it, del doc, or assigning it to something else like doc = None.

	
xref_object(xref, compressed=False, ascii=False)#
		New in v1.16.8

	Changed in v1.18.10

PDF only: Return the definition source of a PDF object.

	Parameters:
		xref (int) – the object’s xref. Changed in v1.18.10: A value of -1 returns the PDF trailer source.

	compressed (bool) – whether to generate a compact output with no line breaks or spaces.

	ascii (bool) – whether to ASCII-encode binary data.

	Return type:
	str

	Returns:
	The object definition source.

	
pdf_catalog()#
		New in v1.16.8

PDF only: Return the xref number of the PDF catalog (or root) object. Use that number with Document.xref_object() to see its source.

	
pdf_trailer(compressed=False)#
		New in v1.16.8

PDF only: Return the trailer source of the PDF, which is usually located at the PDF file’s end. This is Document.xref_object() with an xref argument of -1.

	
xref_stream(xref)#
		New in v1.16.8

PDF only: Return the decompressed contents of the xref stream object.

	Parameters:
	xref (int) – xref number.

	Return type:
	bytes

	Returns:
	the (decompressed) stream of the object.

	
xref_stream_raw(xref)#
		New in v1.16.8

PDF only: Return the unmodified (esp. not decompressed) contents of the xref stream object. Otherwise equal to Document.xref_stream().

	Return type:
	bytes

	Returns:
	the (original, unmodified) stream of the object.

	
update_object(xref, obj_str, page=None)#
		New in v1.16.8

PDF only: Replace object definition of xref with the provided string. The xref may also be new, in which case this instruction completes the object definition. If a page object is also given, its links and annotations will be reloaded afterwards.

	Parameters:
		xref (int) – xref number.

	obj_str (str) – a string containing a valid PDF object definition.

	page (Page) – a page object. If provided, indicates, that annotations of this page should be refreshed (reloaded) to reflect changes incurred with links and / or annotations.

	Return type:
	int

	Returns:
	zero if successful, otherwise an exception will be raised.

	
update_stream(xref, data, new=False, compress=True)#
		New in v.1.16.8

	Changed in v1.19.2: added parameter “compress”

	Changed in v1.19.6: deprecated parameter “new”. Now confirms that the object is a PDF dictionary object.

Replace the stream of an object identified by xref, which must be a PDF dictionary. If the object is no stream, it will be turned into one. The function automatically performs a compress operation (“deflate”) where beneficial.

	Parameters:
		xref (int) – xref number.

	stream (bytes|bytearray|BytesIO) –
the new content of the stream.

(Changed in v1.14.13:) io.BytesIO objects are now also supported.

	new (bool) – deprecated and ignored. Will be removed some time after v1.20.0.

	compress (bool) – whether to compress the inserted stream. If True (default), the stream will be inserted using /FlateDecode compression (if beneficial), otherwise the stream will inserted as is.

	Raises:
	ValueError – if xref does not represent a PDF dict. An empty dictionary <<>> is accepted. So if you just created the xref and want to give it a stream, first execute doc.update_object(xref, "<<>>"), and then insert the stream data with this method.

The method is primarily (but not exclusively) intended to manipulate streams containing PDF operator syntax (see pp. 643 of the Adobe PDF References) as it is the case for e.g. page content streams.

If you update a contents stream, consider using save parameter clean=True to ensure consistency between PDF operator source and the object structure.

Example: Let us assume that you no longer want a certain image appear on a page. This can be achieved by deleting the respective reference in its contents source(s) – and indeed: the image will be gone after reloading the page. But the page’s resources object would still show the image as being referenced by the page. This save option will clean up any such mismatches.

	
xref_copy(source, target, *, keep=None)#
		New in v1.19.5

PDF Only: Make target xref an exact copy of source. If source is a stream, then these data are also copied.

	Parameters:
		source (int) – the source xref. It must be an existing dictionary object.

	target (int) – the target xref. Must be an existing dictionary object. If the xref has just been created, make sure to initialize it as a PDF dictionary with the minimum specification <<>>.

	keep (list) – an optional list of top-level keys in target, that should not be removed in preparation of the copy process.

Note

	This method has much in common with Python’s dict method copy().

	Both xref numbers must represent existing dictionaries.

	Before data is copied from source, all target dictionary keys are deleted. You can specify exceptions from this in the keep list. If source however has a same-named key, its value will still replace the target.

	If source is a stream object, then these data will also be copied over, and target will be converted to a stream object.

	A typical use case is to replace or remove an existing image without using redaction annotations. Example scripts can be seen here.

	
extract_image(xref)#
	PDF Only: Extract data and meta information of an image stored in the document. The output can directly be used to be stored as an image file, as input for PIL, Pixmap creation, etc. This method avoids using pixmaps wherever possible to present the image in its original format (e.g. as JPEG).

	Parameters:
	xref (int) – xref of an image object. If this is not in range(1, doc.xref_length()), or the object is no image or other errors occur, None is returned and no exception is raised.

	Return type:
	dict

	Returns:
	
a dictionary with the following keys

	ext (str) image type (e.g. ‘jpeg’), usable as image file extension

	smask (int) xref number of a stencil (/SMask) image or zero

	width (int) image width

	height (int) image height

	colorspace (int) the image’s colorspace.n number.

	cs-name (str) the image’s colorspace.name.

	xres (int) resolution in x direction. Please also see resolution.

	yres (int) resolution in y direction. Please also see resolution.

	image (bytes) image data, usable as image file content

>>> d = doc.extract_image(1373)
>>> d
{'ext': 'png', 'smask': 2934, 'width': 5, 'height': 629, 'colorspace': 3, 'xres': 96,
'yres': 96, 'cs-name': 'DeviceRGB',
'image': b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x05\ ...'}
>>> imgout = open(f"image.{d['ext']}", "wb")
>>> imgout.write(d["image"])
102
>>> imgout.close()

Note

There is a functional overlap with pix = fitz.Pixmap(doc, xref), followed by a pix.tobytes(). Main differences are that extract_image, (1) does not always deliver PNG image formats, (2) is very much faster with non-PNG images, (3) usually results in much less disk storage for extracted images, (4) returns None in error cases (generates no exception). Look at the following example images within the same PDF.

	xref 1268 is a PNG – Comparable execution time and identical output:

In [23]: %timeit pix = fitz.Pixmap(doc, 1268);pix.tobytes()
10.8 ms ± 52.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [24]: len(pix.tobytes())
Out[24]: 21462

In [25]: %timeit img = doc.extract_image(1268)
10.8 ms ± 86 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [26]: len(img["image"])
Out[26]: 21462

	xref 1186 is a JPEG – Document.extract_image() is many times faster and produces a much smaller output (2.48 MB vs. 0.35 MB):

In [27]: %timeit pix = fitz.Pixmap(doc, 1186);pix.tobytes()
341 ms ± 2.86 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [28]: len(pix.tobytes())
Out[28]: 2599433

In [29]: %timeit img = doc.extract_image(1186)
15.7 µs ± 116 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
In [30]: len(img["image"])
Out[30]: 371177

	
extract_font(xref, info_only=False, named=None)#
	
	Changed in v1.19.4: return a dictionary if named == True.

PDF Only: Return an embedded font file’s data and appropriate file extension. This can be used to store the font as an external file. The method does not throw exceptions (other than via checking for PDF and valid xref).

	arg int xref:
	PDF object number of the font to extract.

	arg bool info_only:
	only return font information, not the buffer. To be used for information-only purposes, avoids allocation of large buffer areas.

	arg bool named:
	If true, a dictionary with the following keys is returned: ‘name’ (font base name), ‘ext’ (font file extension), ‘type’ (font type), ‘content’ (font file content).

	rtype:
	tuple,dict

	returns:
	a tuple (basename, ext, type, content), where ext is a 3-byte suggested file extension (str), basename is the font’s name (str), type is the font’s type (e.g. “Type1”) and content is a bytes object containing the font file’s content (or b””). For possible extension values and their meaning see Font File Extensions. Return details on error:

	("", "", "", b"") – invalid xref or xref is not a (valid) font object.

	(basename, "n/a", "Type1", b"") – basename is not embedded and thus cannot be extracted. This is the case for e.g. the PDF Base 14 Fonts and Type 3 fonts.

Example:

>>> # store font as an external file
>>> name, ext, _, content = doc.extract_font(4711)
>>> # assuming content is not None:
>>> ofile = open(name + "." + ext, "wb")
>>> ofile.write(content)
>>> ofile.close()

Warning

The basename is returned unchanged from the PDF. So it may contain characters (such as blanks) which may disqualify it as a filename for your operating system. Take appropriate action.

Note

	The returned basename in general is not the original file name, but it probably has some similarity.

	If parameter named == True, a dictionary with the following keys is returned: {'name': 'T1', 'ext': 'n/a', 'type': 'Type3', 'content': b''}.

	
xref_xml_metadata()#
		New in v1.16.8

PDF only: Return the xref of the document’s XML metadata.

	
has_links()#
	

	
has_annots()#
		New in v1.18.7

PDF only: Check whether there are links, resp. annotations anywhere in the document.

	Returns:
	True / False. As opposed to fields, which are also stored in a central place of a PDF document, the existence of links / annotations can only be detected by parsing each page. These methods are tuned to do this efficiently and will immediately return, if the answer is True for a page. For PDFs with many thousand pages however, an answer may take some time [6] if no link, resp. no annotation is found.

	
subset_fonts()#
		New in v1.18.7, changed in v1.18.9

PDF only: Investigate eligible fonts for their use by text in the document. If a font is supported and a size reduction is possible, that font is replaced by a version with a character subset.

Use this method immediately before saving the document. The following features and restrictions apply for the time being:

	Package fontTools must be installed. It is required for creating the font subsets. If not installed, the method raises an ImportError exception.

	Supported font types only include embedded OTF, TTF and WOFF that are not already subsets.

	Changed in v1.18.9: A subset font directly replaces its original – text remains untouched and is not rewritten. It thus should retain all its properties, like spacing, hiddenness, control by Optional Content, etc.

The greatest benefit can be achieved when creating new PDFs using large fonts like is typical for Asian scripts. In these cases, the set of actually used unicodes mostly is small compared to the number of glyphs in the font. Using this feature can easily reduce the embedded font binary by two orders of magnitude – from several megabytes to a low two-digit kilobyte amount.

	
journal_enable()#
		New in v1.19.0

PDF only: Enable journalling. Use this before you start logging operations.

	
journal_start_op(name)#
		New in v1.19.0

PDF only: Start journalling an “operation” identified by a string “name”. Updates will fail for a journal-enabled PDF, if no operation has been started.

	
journal_stop_op()#
		New in v1.19.0

PDF only: Stop the current operation. The updates between start and stop of an operation belong to the same unit of work and will be undone / redone together.

	
journal_position()#
		New in v1.19.0

PDF only: Return the numbers of the current operation and the total operation count.

	Returns:
	a tuple (step, steps) containing the current operation number and the total number of operations in the journal. If step is 0, we are at the top of the journal. If step equals steps, we are at the bottom. Updating the PDF with anything other than undo or redo will automatically remove all journal entries after the current one and the new update will become the new last entry in the journal. The updates corresponding to the removed journal entries will be permanently lost.

	
journal_op_name(step)#
		New in v1.19.0

PDF only: Return the name of operation number step.

	
journal_can_do()#
		New in v1.19.0

PDF only: Show whether forward (“redo”) and / or backward (“undo”) executions are possible from the current journal position.

	Returns:
	a dictionary {"undo": bool, "redo": bool}. The respective method is available if its value is True.

	
journal_undo()#
		New in v1.19.0

PDF only: Revert (undo) the current step in the journal. This moves towards the journal’s top.

	
journal_redo()#
		New in v1.19.0

PDF only: Re-apply (redo) the current step in the journal. This moves towards the journal’s bottom.

	
journal_save(filename)#
		New in v1.19.0

PDF only: Save the journal to a file.

	Parameters:
	filename (str,fp) – either a filename as string or a file object opened as “wb” (or an io.BytesIO() object).

	
journal_load(filename)#
		New in v1.19.0

PDF only: Load journal from a file. Enables journalling for the document. If journalling is already enabled, an exception is raised.

	Parameters:
	filename (str,fp) – the filename (str) of the journal or a file object opened as “rb” (or an io.BytesIO() object).

	
save_snapshot()#
		New in v1.19.0

PDF only: Saves a “snapshot” of the document. This is a PDF document with a special, incremental-save format compatible with journalling – therefore no save options are available. Saving a snapshot is not possible for new documents.

This is a normal PDF document with no usage restrictions whatsoever. If it is not being changed in any way, it can be used together with its journal to undo / redo operations or continue updating.

	
outline#
	Contains the first Outline entry of the document (or None). Can be used as a starting point to walk through all outline items. Accessing this property for encrypted, not authenticated documents will raise an AttributeError.

	Type:
	Outline

	
is_closed#
	False if document is still open. If closed, most other attributes and methods will have been deleted / disabled. In addition, Page objects referring to this document (i.e. created with Document.load_page()) and their dependent objects will no longer be usable. For reference purposes, Document.name still exists and will contain the filename of the original document (if applicable).

	Type:
	bool

	
is_dirty#
	True if this is a PDF document and contains unsaved changes, else False.

	Type:
	bool

	
is_pdf#
	True if this is a PDF document, else False.

	Type:
	bool

	
is_form_pdf#
	False if this is not a PDF or has no form fields, otherwise the number of root form fields (fields with no ancestors).

(Changed in v1.16.4) Returns the total number of (root) form fields.

	Type:
	bool,int

	
is_reflowable#
	True if document has a variable page layout (like e-books or HTML). In this case you can set the desired page dimensions during document creation (open) or via method layout().

	Type:
	bool

	
is_repaired#
		New in v1.18.2

True if PDF has been repaired during open (because of major structure issues). Always False for non-PDF documents. If true, more details have been stored in TOOLS.mupdf_warnings(), and Document.can_save_incrementally() will return False.

	Type:
	bool

	
is_fast_webaccess#
		New in v1.22.2

True if PDF is in linearized format. False for non-PDF documents.

	Type:
	bool

	
markinfo#
		New in v1.22.2

A dictionary indicating the /MarkInfo value. If not specified, the empty dictionary is returned. If not a PDF, None is returned.

	Type:
	dict

	
pagemode#
		New in v1.22.2

A string containing the /PageMode value. If not specified, the default “UseNone” is returned. If not a PDF, None is returned.

	Type:
	str

	
pagelayout#
		New in v1.22.2

A string containing the /PageLayout value. If not specified, the default “SinglePage” is returned. If not a PDF, None is returned.

	Type:
	str

	
version_count#
		New in v1.22.2

An integer counting the number of versions present in the document. Zero if not a PDF, otherwise the number of incremental saves plus one.

	Type:
	int

	
needs_pass#
	Indicates whether the document is password-protected against access. This indicator remains unchanged – even after the document has been authenticated. Precludes incremental saves if true.

	Type:
	bool

	
is_encrypted#
	This indicator initially equals Document.needs_pass. After successful authentication, it is set to False to reflect the situation.

	Type:
	bool

	
permissions#
		Changed in v1.16.0: This is now an integer comprised of bit indicators. Was a dictionary previously.

Contains the permissions to access the document. This is an integer containing bool values in respective bit positions. For example, if doc.permissions & fitz.PDF_PERM_MODIFY > 0, you may change the document. See Document Permissions for details.

	Type:
	int

	
metadata#
	Contains the document’s meta data as a Python dictionary or None (if is_encrypted=True and needPass=True). Keys are format, encryption, title, author, subject, keywords, creator, producer, creationDate, modDate, trapped. All item values are strings or None.

Except format and encryption, for PDF documents, the key names correspond in an obvious way to the PDF keys /Creator, /Producer, /CreationDate, /ModDate, /Title, /Author, /Subject, /Trapped and /Keywords respectively.

	format contains the document format (e.g. ‘PDF-1.6’, ‘XPS’, ‘EPUB’).

	encryption either contains None (no encryption), or a string naming an encryption method (e.g. ‘Standard V4 R4 128-bit RC4’). Note that an encryption method may be specified even if needs_pass=False. In such cases not all permissions will probably have been granted. Check Document.permissions for details.

	If the date fields contain valid data (which need not be the case at all!), they are strings in the PDF-specific timestamp format “D:<TS><TZ>”, where

	<TS> is the 12 character ISO timestamp YYYYMMDDhhmmss (YYYY - year, MM - month, DD - day, hh - hour, mm - minute, ss - second), and

	<TZ> is a time zone value (time interval relative to GMT) containing a sign (‘+’ or ‘-‘), the hour (hh), and the minute (‘mm’, note the apostrophes!).

	A Paraguayan value might hence look like D:20150415131602-04’00’, which corresponds to the timestamp April 15, 2015, at 1:16:02 pm local time Asuncion.

	Type:
	dict

	
name#
	Contains the filename or filetype value with which Document was created.

	Type:
	str

	
page_count#
	Contains the number of pages of the document. May return 0 for documents with no pages. Function len(doc) will also deliver this result.

	Type:
	int

	
chapter_count#
		New in v1.17.0

Contains the number of chapters in the document. Always at least 1. Relevant only for document types with chapter support (EPUB currently). Other documents will return 1.

	Type:
	int

	
last_location#
		New in v1.17.0

Contains (chapter, pno) of the document’s last page. Relevant only for document types with chapter support (EPUB currently). Other documents will return (0, page_count - 1) and (0, -1) if it has no pages.

	Type:
	int

	
FormFonts#
	A list of form field font names defined in the /AcroForm object. None if not a PDF.

	Type:
	list

Note

For methods that change the structure of a PDF (insert_pdf(), select(), copy_page(), delete_page() and others), be aware that objects or properties in your program may have been invalidated or orphaned. Examples are Page objects and their children (links, annotations, widgets), variables holding old page counts, tables of content and the like. Remember to keep such variables up to date or delete orphaned objects. Also refer to Ensuring Consistency of Important Objects in PyMuPDF.

set_metadata() Example#

Clear metadata information. If you do this out of privacy / data protection concerns, make sure you save the document as a new file with garbage > 0. Only then the old /Info object will also be physically removed from the file. In this case, you may also want to clear any XML metadata inserted by several PDF editors:

>>> import fitz
>>> doc=fitz.open("pymupdf.pdf")
>>> doc.metadata # look at what we currently have
{'producer': 'rst2pdf, reportlab', 'format': 'PDF 1.4', 'encryption': None, 'author':
'Jorj X. McKie', 'modDate': "D:20160611145816-04'00'", 'keywords': 'PDF, XPS, EPUB, CBZ',
'title': 'The PyMuPDF Documentation', 'creationDate': "D:20160611145816-04'00'",
'creator': 'sphinx', 'subject': 'PyMuPDF 1.9.1'}
>>> doc.set_metadata({}) # clear all fields
>>> doc.metadata # look again to show what happened
{'producer': 'none', 'format': 'PDF 1.4', 'encryption': None, 'author': 'none',
'modDate': 'none', 'keywords': 'none', 'title': 'none', 'creationDate': 'none',
'creator': 'none', 'subject': 'none'}
>>> doc._delXmlMetadata() # clear any XML metadata
>>> doc.save("anonymous.pdf", garbage = 4) # save anonymized doc

set_toc() Demonstration#

This shows how to modify or add a table of contents. Also have a look at import.py and export.py in the examples directory.

>>> import fitz
>>> doc = fitz.open("test.pdf")
>>> toc = doc.get_toc()
>>> for t in toc: print(t) # show what we have
[1, 'The PyMuPDF Documentation', 1]
[2, 'Introduction', 1]
[3, 'Note on the Name fitz', 1]
[3, 'License', 1]
>>> toc[1][1] += " modified by set_toc" # modify something
>>> doc.set_toc(toc) # replace outline tree
3 # number of bookmarks inserted
>>> for t in doc.get_toc(): print(t) # demonstrate it worked
[1, 'The PyMuPDF Documentation', 1]
[2, 'Introduction modified by set_toc', 1] # <<< this has changed
[3, 'Note on the Name fitz', 1]
[3, 'License', 1]

insert_pdf() Examples#

(1) Concatenate two documents including their TOCs:

>>> doc1 = fitz.open("file1.pdf") # must be a PDF
>>> doc2 = fitz.open("file2.pdf") # must be a PDF
>>> pages1 = len(doc1) # save doc1's page count
>>> toc1 = doc1.get_toc(False) # save TOC 1
>>> toc2 = doc2.get_toc(False) # save TOC 2
>>> doc1.insert_pdf(doc2) # doc2 at end of doc1
>>> for t in toc2: # increase toc2 page numbers
 t[2] += pages1 # by old len(doc1)
>>> doc1.set_toc(toc1 + toc2) # now result has total TOC

Obviously, similar ways can be found in more general situations. Just make sure that hierarchy levels in a row do not increase by more than one. Inserting dummy bookmarks before and after toc2 segments would heal such cases. A ready-to-use GUI (wxPython) solution can be found in script join.py of the examples directory.

(2) More examples:

>>> # insert 5 pages of doc2, where its page 21 becomes page 15 in doc1
>>> doc1.insert_pdf(doc2, from_page=21, to_page=25, start_at=15)

>>> # same example, but pages are rotated and copied in reverse order
>>> doc1.insert_pdf(doc2, from_page=25, to_page=21, start_at=15, rotate=90)

>>> # put copied pages in front of doc1
>>> doc1.insert_pdf(doc2, from_page=21, to_page=25, start_at=0)

Other Examples#

Extract all page-referenced images of a PDF into separate PNG files:

for i in range(doc.page_count):
 imglist = doc.get_page_images(i)
 for img in imglist:
 xref = img[0] # xref number
 pix = fitz.Pixmap(doc, xref) # make pixmap from image
 if pix.n - pix.alpha < 4: # can be saved as PNG
 pix.save("p%s-%s.png" % (i, xref))
 else: # CMYK: must convert first
 pix0 = fitz.Pixmap(fitz.csRGB, pix)
 pix0.save("p%s-%s.png" % (i, xref))
 pix0 = None # free Pixmap resources
 pix = None # free Pixmap resources

Rotate all pages of a PDF:

>>> for page in doc: page.set_rotation(90)

Footnotes

[1]
Content streams describe what (e.g. text or images) appears where and how on a page. PDF uses a specialized mini language similar to PostScript to do this (pp. 643 in Adobe PDF References), which gets interpreted when a page is loaded.

[2]
However, you can use Document.get_toc() and Page.get_links() (which are available for all document types) and copy this information over to the output PDF. See demo convert.py.

[3]
For applicable (EPUB) document types, loading a page via its absolute number may result in layouting a large part of the document, before the page can be accessed. To avoid this performance impact, prefer chapter-based access. Use convenience methods and attributes Document.next_location(), Document.prev_location() and Document.last_location for maintaining a high level of coding efficiency.

[4]
(1,2)
These parameters cause separate handling of stream categories: use it together with expand to restrict decompression to streams other than images / fontfiles.

[5]
Examples for “Form XObjects” are created by Page.show_pdf_page().

[6]
For a False the complete document must be scanned. Both methods do not load pages, but only scan object definitions. This makes them at least 10 times faster than application-level loops (where total response time roughly equals the time for loading all pages). For the Adobe PDF References (756 pages) and the Pandas documentation (over 3070 pages) – both have no annotations – the method needs about 11 ms for the answer False. So response times will probably become significant only well beyond this order of magnitude.

[7]
This only works under certain conditions. For example, if there is normal text covered by some image on top of it, then this is undetectable and the respective text is not removed. Similar is true for white text on white background, and so on.

Do you have any feedback on this page?

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer to licensing information at artifex.com or contact Artifex Software Inc., 39 Mesa Street, Suite 108A, San Francisco CA 94129, United States for further information.

This documentation covers all versions up to 1.23.26.

 Next

 DocumentWriter

 Previous

 DisplayList

 Copyright © 2015-2024, Artifex

 Made with
 Furo

 Last updated on 08. Mar 2024

 On this page

 	Document	Document	Document.__init__()
	Document.get_oc()
	Document.set_oc()
	Document.get_layers()
	Document.add_layer()
	Document.switch_layer()
	Document.add_ocg()
	Document.set_ocmd()
	Document.get_ocmd()
	Document.get_layer()
	Document.set_layer()
	Document.get_ocgs()
	Document.layer_ui_configs()
	Document.set_layer_ui_config()
	Document.authenticate()
	Document.get_page_numbers()
	Document.get_page_labels()
	Document.set_page_labels()
	Document.make_bookmark()
	Document.find_bookmark()
	Document.chapter_page_count()
	Document.next_location()
	Document.prev_location()
	Document.load_page()
	Document.reload_page()
	Document.resolve_names()
	Document.page_cropbox()
	Document.page_xref()
	Document.pages()
	Document.convert_to_pdf()
	Document.get_toc()
	Document.xref_get_keys()
	Document.xref_get_key()
	Document.xref_set_key()
	Document.get_page_pixmap()
	Document.get_page_xobjects()
	Document.get_page_images()
	Document.get_page_fonts()
	Document.get_page_text()
	Document.layout()
	Document.select()
	Document.set_metadata()
	Document.get_xml_metadata()
	Document.set_xml_metadata()
	Document.set_pagelayout()
	Document.set_pagemode()
	Document.set_markinfo()
	Document.set_toc()
	Document.outline_xref()
	Document.del_toc_item()
	Document.set_toc_item()
	Document.can_save_incrementally()
	Document.scrub()
	Document.save()
	Document.ez_save()
	Document.saveIncr()
	Document.tobytes()
	Document.search_page_for()
	Document.insert_pdf()
	Document.insert_file()
	Document.new_page()
	Document.insert_page()
	Document.delete_page()
	Document.delete_pages()
	Document.copy_page()
	Document.fullcopy_page()
	Document.move_page()
	Document.need_appearances()
	Document.get_sigflags()
	Document.embfile_add()
	Document.embfile_count()
	Document.embfile_get()
	Document.embfile_del()
	Document.embfile_info()
	Document.embfile_names()
	Document.embfile_upd()
	Document.close()
	Document.xref_object()
	Document.pdf_catalog()
	Document.pdf_trailer()
	Document.xref_stream()
	Document.xref_stream_raw()
	Document.update_object()
	Document.update_stream()
	Document.xref_copy()
	Document.extract_image()
	Document.extract_font()
	Document.xref_xml_metadata()
	Document.has_links()
	Document.has_annots()
	Document.subset_fonts()
	Document.journal_enable()
	Document.journal_start_op()
	Document.journal_stop_op()
	Document.journal_position()
	Document.journal_op_name()
	Document.journal_can_do()
	Document.journal_undo()
	Document.journal_redo()
	Document.journal_save()
	Document.journal_load()
	Document.save_snapshot()
	Document.outline
	Document.is_closed
	Document.is_dirty
	Document.is_pdf
	Document.is_form_pdf
	Document.is_reflowable
	Document.is_repaired
	Document.is_fast_webaccess
	Document.markinfo
	Document.pagemode
	Document.pagelayout
	Document.version_count
	Document.needs_pass
	Document.is_encrypted
	Document.permissions
	Document.metadata
	Document.name
	Document.page_count
	Document.chapter_count
	Document.last_location
	Document.FormFonts

	set_metadata() Example
	set_toc() Demonstration
	insert_pdf() Examples
	Other Examples

